Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Seth Nemesure x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Seth Nemesure, Robert D. Cess, Ellsworth G. Dutton, John J. Deluisi, Zhanqing Li, and Henry G. Leighton


Recent data from the Earth Radiation Budget Experiment (ERBE) have raised the question as to whether or not the addition of clouds to the atmospheric column can decrease the top-of-the-atmosphere (TOA) albedo over bright snow-covered surfaces. To address this issue, ERBE shortwave pixel measurements have been collocated with surface insolation measurements made at two snow-covered locations: the South Pole and Saskatoon, Saskatchewan. Both collocated datasets show a negative correlation (with solar zenith angle variability removed) between TOA albedo and surface insulation. Because increased cloudiness acts to reduce surface insulation, these negative correlations demonstrate that clouds increase the TOA albedo at both snow-covered locations.

Full access
Robert D. Cess, Seth Nemesure, Ellsworth G. Dutton, John J. Deluisi, Gerald L. Potter, and Jean-Jacques Morcrette


Two datasets have been combined to demonstrate how the availability of more comprehensive datasets could serve to elucidate the shortwave radiative impact of clouds on both the atmospheric column and the surface. These datasets consist of two measurements of net downward shortwave radiation: one of near-surface measurements made at the Boulder Atmospheric Observatory tower, and the other of collocated top-of-the-atmosphere measurements from the Earth Radiation Budget Experiment. Output from the European Centre for Medium-Range Weather Forecasts General Circulation Model also has been used as an aid in interpreting the data, while the data have in turn been employed to validate the model's shortwave radiation code as it pertains to cloud radiation properties. Combined, the datasets and model demonstrate a strategy for determining under what conditions the shortwave radiative impact of clouds leads to a heating or cooling of the atmospheric column. The datasets also show, in terms of a linear slope-offset algorithm for retrieving the net downward shortwave radiation at the surface from satellite measurements, that the clouds present during this study produced a modest negative bias in the retrieved surface flux relative to that inferred from a clear-sky algorithm.

Full access