Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Simon P. Alexander x
- Artificial Intelligence for the Earth Systems x
- Refine by Access: Content accessible to me x
Abstract
Earth system models struggle to simulate clouds and their radiative effects over the Southern Ocean, partly due to a lack of measurements and targeted cloud microphysics knowledge. We have evaluated biases of downwelling shortwave radiation in the ERA5 climate reanalysis using 25 years (1995–2019) of summertime surface measurements, collected on the Research and Supply Vessel (RSV) Aurora Australis, the Research Vessel (R/V) Investigator, and at Macquarie Island. During October–March daylight hours, the ERA5 simulation of SWdown exhibited large errors (mean bias = 54 W m−2, mean absolute error = 82 W m−2, root-mean-square error = 132 W m−2, and R 2 = 0.71). To determine whether we could improve these statistics, we bypassed ERA5’s radiative transfer model for SWdown with machine learning–based models using a number of ERA5’s gridscale meteorological variables as predictors. These models were trained and tested with the surface measurements of SWdown using a 10-fold shuffle split. An extreme gradient boosting (XGBoost) and a random forest–based model setup had the best performance relative to ERA5, both with a near complete reduction of the mean bias error, a decrease in the mean absolute error and root-mean-square error by 25% ± 3%, and an increase in the R 2 value of 5% ± 1% over the 10 splits. Large improvements occurred at higher latitudes and cyclone cold sectors, where ERA5 performed most poorly. We further interpret our methods using Shapley additive explanations. Our results indicate that data-driven techniques could have an important role in simulating surface radiation fluxes and in improving reanalysis products.
Significance Statement
Simulating the amount of sunlight reaching Earth’s surface is difficult because it relies on a good understanding of how much clouds absorb and scatter sunlight. Relative to summertime surface observations, the ERA5 reanalysis still overestimates the amount of sunlight entering the Southern Ocean. We taught some models how to predict the amount of sunlight entering the Southern Ocean using 25 years of surface observations and a small set of meteorological variables from ERA5. By bypassing the ERA5’s internal simulation of the absorption and scattering of sunlight, we can drastically reduce biases in the predicted surface shortwave radiation. Large improvements in cold sectors of cyclones and closer to Antarctica were observed in regions where many numerical models struggle to simulate the amount of incoming sunlight correctly.
Abstract
Earth system models struggle to simulate clouds and their radiative effects over the Southern Ocean, partly due to a lack of measurements and targeted cloud microphysics knowledge. We have evaluated biases of downwelling shortwave radiation in the ERA5 climate reanalysis using 25 years (1995–2019) of summertime surface measurements, collected on the Research and Supply Vessel (RSV) Aurora Australis, the Research Vessel (R/V) Investigator, and at Macquarie Island. During October–March daylight hours, the ERA5 simulation of SWdown exhibited large errors (mean bias = 54 W m−2, mean absolute error = 82 W m−2, root-mean-square error = 132 W m−2, and R 2 = 0.71). To determine whether we could improve these statistics, we bypassed ERA5’s radiative transfer model for SWdown with machine learning–based models using a number of ERA5’s gridscale meteorological variables as predictors. These models were trained and tested with the surface measurements of SWdown using a 10-fold shuffle split. An extreme gradient boosting (XGBoost) and a random forest–based model setup had the best performance relative to ERA5, both with a near complete reduction of the mean bias error, a decrease in the mean absolute error and root-mean-square error by 25% ± 3%, and an increase in the R 2 value of 5% ± 1% over the 10 splits. Large improvements occurred at higher latitudes and cyclone cold sectors, where ERA5 performed most poorly. We further interpret our methods using Shapley additive explanations. Our results indicate that data-driven techniques could have an important role in simulating surface radiation fluxes and in improving reanalysis products.
Significance Statement
Simulating the amount of sunlight reaching Earth’s surface is difficult because it relies on a good understanding of how much clouds absorb and scatter sunlight. Relative to summertime surface observations, the ERA5 reanalysis still overestimates the amount of sunlight entering the Southern Ocean. We taught some models how to predict the amount of sunlight entering the Southern Ocean using 25 years of surface observations and a small set of meteorological variables from ERA5. By bypassing the ERA5’s internal simulation of the absorption and scattering of sunlight, we can drastically reduce biases in the predicted surface shortwave radiation. Large improvements in cold sectors of cyclones and closer to Antarctica were observed in regions where many numerical models struggle to simulate the amount of incoming sunlight correctly.