Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Steven J. Woolnough x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Simon H. Lee, Andrew J. Charlton-Perez, Steven J. Woolnough, and Jason C. Furtado


Observational evidence shows changes to North American weather regime occurrence depending on the strength of the lower-stratospheric polar vortex. However, it is not yet clear how this occurs or to what extent an improved stratospheric forecast would change regime predictions. Here we analyze four North American regimes at 500 hPa, constructed in principal component (PC) space. We consider both the location of the regimes in PC space and the linear regression between each PC and the lower-stratospheric zonal-mean winds, yielding a theory of which regime transitions are likely to occur due to changes in the lower stratosphere. Using a set of OpenIFS simulations, we then test the effect of relaxing the polar stratosphere to ERA-Interim on subseasonal regime predictions. The model start dates are selected based on particularly poor subseasonal regime predictions in the European Centre for Medium-Range Weather Forecasts CY43R3 hindcasts. While the results show only a modest improvement to the number of accurate regime predictions, there is a substantial reduction in Euclidean distance error in PC space. The average movement of the forecasts within PC space is found to be consistent with expectation for moderate-to-large lower-stratospheric zonal wind perturbations. Overall, our results provide a framework for interpreting the stratospheric influence on North American regime behavior. The results can be applied to subseasonal forecasts to understand how stratospheric uncertainty may affect regime predictions, and to diagnose which regime forecast errors are likely to be related to stratospheric errors.

Significance Statement

Predicting the weather several weeks ahead is a major challenge with large potential benefits to society. The strength of the circulation more than 10 km above the Arctic during winter (i.e., the polar vortex) is one source of predictability. This study investigates how forecast error and uncertainty in the polar vortex can impact predictions of large-scale weather patterns called “regimes” over North America. Through statistical analysis of observations and experiments with a weather forecast model, we develop an understanding of which regime changes are more likely to be due to changes in the polar vortex. The results will help forecasters and researchers understand the contribution of the stratosphere to changes in weather patterns, and in assessing and improving weather forecast models.

Open access
Joshua Talib, Steven J. Woolnough, Nicholas P. Klingaman, and Christopher E. Holloway


Studies have shown that the location and structure of the simulated intertropical convergence zone (ITCZ) is sensitive to the treatment of sub-gridscale convection and cloud–radiation interactions. This sensitivity remains in idealized aquaplanet experiments with fixed surface temperatures. However, studies have not considered the role of cloud-radiative effects (CRE; atmospheric heating due to cloud–radiation interactions) in the sensitivity of the ITCZ to the treatment of convection. We use an atmospheric energy input (AEI) framework to explore how the CRE modulates the sensitivity of the ITCZ to convective mixing in aquaplanet simulations. Simulations show a sensitivity of the ITCZ to convective mixing, with stronger convective mixing favoring a single ITCZ. For simulations with a single ITCZ, the CRE maintains the positive equatorial AEI. To explore the role of the CRE further, we prescribe the CRE as either zero or a meridionally and diurnally varying climatology. Removing the CRE is associated with a reduced equatorial AEI and an increase in the range of convective mixing rates that produce a double ITCZ. Prescribing the CRE reduces the sensitivity of the ITCZ to convective mixing by 50%. In prescribed-CRE simulations, other AEI components, in particular the surface latent heat flux, modulate the sensitivity of the AEI to convective mixing. Analysis of the meridional moist static energy transport shows that a shallower Hadley circulation can produce an equatorward energy transport at low latitudes even with equatorial ascent.

Open access
Nicholas P. Klingaman, Steven J. Woolnough, Hilary Weller, and Julia M. Slingo


A newly assembled atmosphere–ocean coupled model, called HadKPP, is described and then used to determine the effects of subdaily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intraseasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K-Profile Parameterization ocean boundary layer model.

Four 30-member ensembles were performed that vary in ocean vertical resolution between 1 and 10 m and in coupling frequency between 3 and 24 h. The 10-m, 24-h ensemble exhibited roughly 60% of the observed 30–50-day variability in sea surface temperatures and rainfall and very weak northward propagation. Enhancing only the vertical resolution or only the coupling frequency produced modest improvements in variability and just a standing intraseasonal oscillation. Only the 1-m, 3-h configuration generated organized, northward-propagating convection similar to observations. Subdaily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intraseasonal oscillation in this model.

Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical subseasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intraseasonal oscillation resembling observations.

Full access