Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Surabi Menon x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Dorothy Koch, Surabi Menon, Anthony Del Genio, Reto Ruedy, Igor Alienov, and Gavin A. Schmidt


Aerosol direct (DE), indirect (IE), and black carbon–snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol–climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control (1890)–perturbation (1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed by −0.2°, −1.0°, and +0.2°C from the DE, IE, and BAE. Ice and snow cover increased 1% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20%, and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer–fall, but SAT, sea level pressure, and longwave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm season but the associated SAT effect is delayed until winter.

Full access
Dorothy Koch, Susanne E. Bauer, Anthony Del Genio, Greg Faluvegi, Joseph R. McConnell, Surabi Menon, Ronald L. Miller, David Rind, Reto Ruedy, Gavin A. Schmidt, and Drew Shindell


The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC-snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s–80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is −0.41 W m−2, the BC-albedo effect is −0.02 W m−2, and the net ozone forcing is +0.24 W m−2. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observed midcentury cooling followed by the late century warming. Over the century, 20% of Arctic warming and snow–ice cover loss is attributed to the BC-albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling.

To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed all pollution sulfate or BC. Averaged over 1970–2000, the respective radiative forcings relative to the full experiment were +0.3 and −0.3 W m−2; the average surface air temperature changes were +0.2° and −0.03°C. The small impact of BC reduction on surface temperature resulted from reduced stability and loss of low-level clouds.

Full access