Search Results
You are looking at 1 - 10 of 11 items for :
- Author or Editor: Timothy Lang x
- Monthly Weather Review x
- Refine by Access: Content accessible to me x
Abstract
A pyrocumulus is a convective cloud that can develop over a wildfire. Under certain conditions, pyrocumulus clouds become vertically developed enough to produce lightning. NEXRAD dual-polarization weather radar and upgraded National Lightning Detection Network (NLDN) data were used to analyze 10 case studies of ash plumes and pyrocumulus clouds from 2013 that either did or did not produce detected lightning. Past research has shown that pyrocumulus cases are most likely to produce lightning when there is a decrease in differential reflectivity (toward 0 dB) and an increase in the correlation coefficient (to >0.8), as measured by polarimetric radar, due to the transition from pure smoke/ash to frozen hydrometeors. All pyrocumulus cases that produced lightning in this study displayed the polarimetric characteristics of rimed ice within their respective clouds. Time series analysis of radar-inferred ash and rimed ice volumes within ash plumes and pyrocumulus clouds showed that NLDN-detected lightning occurred only after the cloud contained significant amounts of precipitation-sized rimed ice. The results suggest that the recently dual-pol-enabled NEXRADs and the more sensitive NLDN network can be used to explore ash plume and pyrocumulus microphysical structure and lightning production.
Abstract
A pyrocumulus is a convective cloud that can develop over a wildfire. Under certain conditions, pyrocumulus clouds become vertically developed enough to produce lightning. NEXRAD dual-polarization weather radar and upgraded National Lightning Detection Network (NLDN) data were used to analyze 10 case studies of ash plumes and pyrocumulus clouds from 2013 that either did or did not produce detected lightning. Past research has shown that pyrocumulus cases are most likely to produce lightning when there is a decrease in differential reflectivity (toward 0 dB) and an increase in the correlation coefficient (to >0.8), as measured by polarimetric radar, due to the transition from pure smoke/ash to frozen hydrometeors. All pyrocumulus cases that produced lightning in this study displayed the polarimetric characteristics of rimed ice within their respective clouds. Time series analysis of radar-inferred ash and rimed ice volumes within ash plumes and pyrocumulus clouds showed that NLDN-detected lightning occurred only after the cloud contained significant amounts of precipitation-sized rimed ice. The results suggest that the recently dual-pol-enabled NEXRADs and the more sensitive NLDN network can be used to explore ash plume and pyrocumulus microphysical structure and lightning production.
Abstract
The Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP–NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.
Abstract
The Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP–NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.
Abstract
The Marsyandi River basin in the central Nepalese Himalayas is a topographically complex region, with strong spatial gradients of precipitation over various timescales. A meteorological network consisting of 20 stations was installed at a variety of elevations (528–4435 m) in this region, and measurements of rainfall were made during the 1999 and 2000 summer monsoons. The onsets of the 1999 and 2000 monsoons in central Nepal were examined at different spatial scales by using a combination of rain gauge, Meteosat-5, Tropical Rainfall Measuring Mission (TRMM), ECMWF analysis, and Indian radiosonde data. At the network, the onsets manifested themselves as multiday rain events, which included a mixture of stratiform and convective precipitation. Moist and unstable upslope flow was associated with the occurrence of heavy rainfall. During each onset, 2-day rainfall reached as high as 462 mm, corresponding to 10%–20% of the monsoon rainfall. Differences among rain gauges were up to a factor of 8, reflecting the role of small-scale terrain features in modulating rainfall amounts. At the larger scale, the onsets were associated with monsoon depressions from the Bay of Bengal that moved close enough to the Himalayas to cause the observed upslope flow from the winds on their eastern flank. During the 1999 onset, convection in this eastern flank collided with the mountains in the vicinity of the network. In 2000 no major collision occurred, and 33%–50% less rain than 1999 fell. Analysis of observations for a 5-yr period (1997–2001) suggests that the interannual variability of the monsoon onset along the Himalayan range is linked to the trajectories and strength of these depressions.
Abstract
The Marsyandi River basin in the central Nepalese Himalayas is a topographically complex region, with strong spatial gradients of precipitation over various timescales. A meteorological network consisting of 20 stations was installed at a variety of elevations (528–4435 m) in this region, and measurements of rainfall were made during the 1999 and 2000 summer monsoons. The onsets of the 1999 and 2000 monsoons in central Nepal were examined at different spatial scales by using a combination of rain gauge, Meteosat-5, Tropical Rainfall Measuring Mission (TRMM), ECMWF analysis, and Indian radiosonde data. At the network, the onsets manifested themselves as multiday rain events, which included a mixture of stratiform and convective precipitation. Moist and unstable upslope flow was associated with the occurrence of heavy rainfall. During each onset, 2-day rainfall reached as high as 462 mm, corresponding to 10%–20% of the monsoon rainfall. Differences among rain gauges were up to a factor of 8, reflecting the role of small-scale terrain features in modulating rainfall amounts. At the larger scale, the onsets were associated with monsoon depressions from the Bay of Bengal that moved close enough to the Himalayas to cause the observed upslope flow from the winds on their eastern flank. During the 1999 onset, convection in this eastern flank collided with the mountains in the vicinity of the network. In 2000 no major collision occurred, and 33%–50% less rain than 1999 fell. Analysis of observations for a 5-yr period (1997–2001) suggests that the interannual variability of the monsoon onset along the Himalayan range is linked to the trajectories and strength of these depressions.
Abstract
A framework for the statistical analysis of large radar and lightning datasets is described and implemented in order to analyze two research questions in atmospheric electricity: storms dominated by positive cloud-to-ground (+CG) lightning and estimating the probability of lightning in convection. The framework—a collection of computer programs running in series—is fully modular, allowing the analysis of a variety of datasets based on a study’s objectives, including radar observations, lightning data, observations of meteorological environments, and other data. The framework has been applied to over 2 months of observations of 28 463 cells. The results suggest that +CG-dominated cells contain midlevel positive charge (−10° to −30°C), in contrast to cells dominated by −CG lightning, which typically had positive charge at upper (near −40°C) and lower levels (0° to −10°C). The +CG cells also were larger and more intense, and were associated with environments that were more convectively favorable—in terms of increased moisture, shear, and especially instability—when compared to −CG cells. The framework was also used to examine the probability of lightning occurrence for a spectrum of radar structures. The existence of 30-dBZ echo above the freezing altitude is a “necessary” condition (in ~90% of cases) for lightning occurrence. A “sufficient” condition (in ~90% of cases) is 40-dBZ echo breaching the freezing altitude. Altitude or volume of 40-dBZ echo was the superior estimator for the occurrence of lightning, while 30 dBZ was better for inferring the lack of lightning.
Abstract
A framework for the statistical analysis of large radar and lightning datasets is described and implemented in order to analyze two research questions in atmospheric electricity: storms dominated by positive cloud-to-ground (+CG) lightning and estimating the probability of lightning in convection. The framework—a collection of computer programs running in series—is fully modular, allowing the analysis of a variety of datasets based on a study’s objectives, including radar observations, lightning data, observations of meteorological environments, and other data. The framework has been applied to over 2 months of observations of 28 463 cells. The results suggest that +CG-dominated cells contain midlevel positive charge (−10° to −30°C), in contrast to cells dominated by −CG lightning, which typically had positive charge at upper (near −40°C) and lower levels (0° to −10°C). The +CG cells also were larger and more intense, and were associated with environments that were more convectively favorable—in terms of increased moisture, shear, and especially instability—when compared to −CG cells. The framework was also used to examine the probability of lightning occurrence for a spectrum of radar structures. The existence of 30-dBZ echo above the freezing altitude is a “necessary” condition (in ~90% of cases) for lightning occurrence. A “sufficient” condition (in ~90% of cases) is 40-dBZ echo breaching the freezing altitude. Altitude or volume of 40-dBZ echo was the superior estimator for the occurrence of lightning, while 30 dBZ was better for inferring the lack of lightning.
Abstract
Combined multiparameter radar, dual-Doppler, thermodynamic sounding, and lightning observations of 11 thunderstorms (6 from the midlatitudes, 5 from the Tropics) are examined. The thunderstorms span a wide spectrum of intensities, from weak monsoontype to severe tornadic, and include both unicellular and multicellular convection. In general, the kinematically strongest storms featured lower production of negative cloud-to-ground lightning (typically <1 min−1 flash rates for large portions of the storms' lifetimes) when compared with more moderate convection, in accord with an elevated charge mechanism. The only significant differences between intense storms that produced predominately positive cloud-to-ground (CG) lightning for a significant portion of their lifetimes (PPCG storms) and intense storms that produced little CG lightning of any polarity (low-CG storms) was that PPCG storms featured much larger volumes of significant updrafts (both >10 and >20 m s−1) and produced greater amounts of precipitation (both rain and hail). Otherwise, peak updrafts and vertical airmass fluxes were very similar between the two types of storms, and both types were linked by anomalously low production of negative CG lightning. PPCG effects in storms may result from an elevated region of negative charge (reducing negative CG flash rates) combined with enhanced net positive charge regions created by the larger volume of significant updrafts.
Abstract
Combined multiparameter radar, dual-Doppler, thermodynamic sounding, and lightning observations of 11 thunderstorms (6 from the midlatitudes, 5 from the Tropics) are examined. The thunderstorms span a wide spectrum of intensities, from weak monsoontype to severe tornadic, and include both unicellular and multicellular convection. In general, the kinematically strongest storms featured lower production of negative cloud-to-ground lightning (typically <1 min−1 flash rates for large portions of the storms' lifetimes) when compared with more moderate convection, in accord with an elevated charge mechanism. The only significant differences between intense storms that produced predominately positive cloud-to-ground (CG) lightning for a significant portion of their lifetimes (PPCG storms) and intense storms that produced little CG lightning of any polarity (low-CG storms) was that PPCG storms featured much larger volumes of significant updrafts (both >10 and >20 m s−1) and produced greater amounts of precipitation (both rain and hail). Otherwise, peak updrafts and vertical airmass fluxes were very similar between the two types of storms, and both types were linked by anomalously low production of negative CG lightning. PPCG effects in storms may result from an elevated region of negative charge (reducing negative CG flash rates) combined with enhanced net positive charge regions created by the larger volume of significant updrafts.
Abstract
A major objective of the North American Monsoon Experiment (NAME) was to quantify microphysical processes within convection occurring near the steep topography of northwestern Mexico. A previous study compared examples of isolated convection using polarimetric radar data and noted a dependence on mixed-phase processes via drop freezing and subsequent riming growth along the coastal plain and western slopes, with an even greater role of melting ice in rainfall production over the highest terrain. Despite the higher frequency of these isolated cells compared to organized convective systems, the latter were responsible for 75% of rainfall. Therefore, this study seeks to evaluate the role of mesoscale organization on microphysical processes and describes the evolution of these systems as a function of topography.
Similar to isolated convection, both warm-rain and ice-based processes played important roles in producing intense rainfall in organized convection. Although similarities existed between cell types, organized convection was typically deeper and contained greater ice mass, which melted and contributed to the development of outflow boundaries. As convection organized along the slopes, these boundaries spread over the lower terrain, converging with diurnally driven upslope flow, thus allowing for the generation of new convection and propagation toward the coast. Once over lower elevations, additional warm-cloud depth contributed to intense rainfall and allowed for continued ice production. This, along with the development of rear inflow in the trailing stratiform region, led to further development of convective outflow, similar to organized systems in the tropics and midlatitudes.
Abstract
A major objective of the North American Monsoon Experiment (NAME) was to quantify microphysical processes within convection occurring near the steep topography of northwestern Mexico. A previous study compared examples of isolated convection using polarimetric radar data and noted a dependence on mixed-phase processes via drop freezing and subsequent riming growth along the coastal plain and western slopes, with an even greater role of melting ice in rainfall production over the highest terrain. Despite the higher frequency of these isolated cells compared to organized convective systems, the latter were responsible for 75% of rainfall. Therefore, this study seeks to evaluate the role of mesoscale organization on microphysical processes and describes the evolution of these systems as a function of topography.
Similar to isolated convection, both warm-rain and ice-based processes played important roles in producing intense rainfall in organized convection. Although similarities existed between cell types, organized convection was typically deeper and contained greater ice mass, which melted and contributed to the development of outflow boundaries. As convection organized along the slopes, these boundaries spread over the lower terrain, converging with diurnally driven upslope flow, thus allowing for the generation of new convection and propagation toward the coast. Once over lower elevations, additional warm-cloud depth contributed to intense rainfall and allowed for continued ice production. This, along with the development of rear inflow in the trailing stratiform region, led to further development of convective outflow, similar to organized systems in the tropics and midlatitudes.
Abstract
To address questions regarding microphysical processes occurring in the core North American monsoon region, data from NCAR’s S-band polarimetric Doppler radar (S-Pol) deployed during the North American Monsoon Experiment (NAME) in the summer of 2004, were used to investigate the location, size, and type of hydrometeors in convection. A cell identification and tracking algorithm was applied to this data over 100 h of microphysical scans, characterized by increased temporal and vertical resolution, to locate and track individual convective elements. Only isolated cells over land were included for this study to investigate potential elevation-dependent trends in microphysical processes in this region.
Examples of intense, isolated convection over all elevations revealed deep cells and polarimetric signatures comparable to other studies of tropical and midlatitude convection. A case over the low terrain highlighted deep, isolated convection with precipitation-sized ice extending to 15 km. In addition, the presence of differential reflectivity Z DR columns in these cells indicated the lofting of supercooled water above the melting level, and an enhanced linear depolarization ratio L DR “cap” above the column implied subsequent freezing to produce graupel. Similar features were also observed in an isolated cell over the western slopes, highlighting the combined roles of collision–coalescence and melting precipitation-sized ice for producing intense rainfall over the lower elevations. Despite previous observations of weaker and shallower cells with less precipitation ice over the Sierra Madre Occidental (SMO), case studies and general statistics using polarimetric data reveal the potential for accretional processes to also play an important role in producing intense rainfall over these higher elevations. For these isolated SMO cells, reduced warm-cloud depths, increased ice mass observed just above the melting level, and a narrower distribution of drop sizes suggest a reduced role of warm-rain processes compared to intense cells over the lower terrain. A potential relationship between microphysical processes and degree of organization is also hypothesized and will be the focus of a future study.
Abstract
To address questions regarding microphysical processes occurring in the core North American monsoon region, data from NCAR’s S-band polarimetric Doppler radar (S-Pol) deployed during the North American Monsoon Experiment (NAME) in the summer of 2004, were used to investigate the location, size, and type of hydrometeors in convection. A cell identification and tracking algorithm was applied to this data over 100 h of microphysical scans, characterized by increased temporal and vertical resolution, to locate and track individual convective elements. Only isolated cells over land were included for this study to investigate potential elevation-dependent trends in microphysical processes in this region.
Examples of intense, isolated convection over all elevations revealed deep cells and polarimetric signatures comparable to other studies of tropical and midlatitude convection. A case over the low terrain highlighted deep, isolated convection with precipitation-sized ice extending to 15 km. In addition, the presence of differential reflectivity Z DR columns in these cells indicated the lofting of supercooled water above the melting level, and an enhanced linear depolarization ratio L DR “cap” above the column implied subsequent freezing to produce graupel. Similar features were also observed in an isolated cell over the western slopes, highlighting the combined roles of collision–coalescence and melting precipitation-sized ice for producing intense rainfall over the lower elevations. Despite previous observations of weaker and shallower cells with less precipitation ice over the Sierra Madre Occidental (SMO), case studies and general statistics using polarimetric data reveal the potential for accretional processes to also play an important role in producing intense rainfall over these higher elevations. For these isolated SMO cells, reduced warm-cloud depths, increased ice mass observed just above the melting level, and a narrower distribution of drop sizes suggest a reduced role of warm-rain processes compared to intense cells over the lower terrain. A potential relationship between microphysical processes and degree of organization is also hypothesized and will be the focus of a future study.
Abstract
Radar data from the 2004 North American Monsoon Experiment (NAME) enhanced observing period were used to investigate diurnal trends and vertical structure of precipitating features relative to local terrain. Two-dimensional composites of reflectivity and rain rate, created from the two Servicio Meteorológico Nacional (SMN; Mexican Weather Service) C-band Doppler radars and NCAR’s S-band polarimetric Doppler radar (S-Pol), were divided into four elevation groups: over water, 0–1000 m (MSL), 1000–2000 m, and greater than 2000 m. Analysis of precipitation frequency and average rainfall intensity using these composites reveals a strong diurnal trend in precipitation similar to that observed by the NAME Event Rain Gauge Network. Precipitation occurs most frequently during the afternoon over the Sierra Madre Occidental (SMO), with the peak frequency moving over the lower elevations by evening. Also, the precipitation events over the lower elevations are less frequent but of greater intensity (rain rate) than those over the SMO. Precipitation echoes were partitioned into convective and stratiform components to allow for examination of vertical characteristics of convection using data from S-Pol. Analyses of reflectivity profiles and echo-top heights confirm that convection over the lower terrain is more intense and vertically developed than convection over the SMO. Warm-cloud depths, estimated from the Colorado State University–NAME upper-air and surface gridded analyses are, on average, 2 times as deep over the lower terrain as compared with over the SMO. Using a simplified stochastic model for drop growth, it is shown that these differences in warm-cloud depths could possibly explain the observed elevation-dependent trends in precipitation intensity.
Abstract
Radar data from the 2004 North American Monsoon Experiment (NAME) enhanced observing period were used to investigate diurnal trends and vertical structure of precipitating features relative to local terrain. Two-dimensional composites of reflectivity and rain rate, created from the two Servicio Meteorológico Nacional (SMN; Mexican Weather Service) C-band Doppler radars and NCAR’s S-band polarimetric Doppler radar (S-Pol), were divided into four elevation groups: over water, 0–1000 m (MSL), 1000–2000 m, and greater than 2000 m. Analysis of precipitation frequency and average rainfall intensity using these composites reveals a strong diurnal trend in precipitation similar to that observed by the NAME Event Rain Gauge Network. Precipitation occurs most frequently during the afternoon over the Sierra Madre Occidental (SMO), with the peak frequency moving over the lower elevations by evening. Also, the precipitation events over the lower elevations are less frequent but of greater intensity (rain rate) than those over the SMO. Precipitation echoes were partitioned into convective and stratiform components to allow for examination of vertical characteristics of convection using data from S-Pol. Analyses of reflectivity profiles and echo-top heights confirm that convection over the lower terrain is more intense and vertically developed than convection over the SMO. Warm-cloud depths, estimated from the Colorado State University–NAME upper-air and surface gridded analyses are, on average, 2 times as deep over the lower terrain as compared with over the SMO. Using a simplified stochastic model for drop growth, it is shown that these differences in warm-cloud depths could possibly explain the observed elevation-dependent trends in precipitation intensity.
Abstract
Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.
Abstract
Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.
Abstract
Concurrent measurements from the CSU-CHILL multiparameter Doppler radar, the Office National d’Etudes et de Recherches Aérospatiales VHF lightning interferometer, and the National Lightning Detection Network, obtained during phase A of the Stratosphere–Troposphere Experiments: Radiation, Aerosols, Ozone (STERAO-A) field project, provided a unique dataset with which to study the relationships between convective storm microphysics and associated lightning. Two storms have been examined in detail in this study: 10 and 12 July 1996. Both storms were long lived, existing in some form for over 4 h apiece, and produced very low cloud-to-ground (CG) lightning flash rates, in particular negative CG flash rates (generally <1 min−1 and often no CG flashes for periods ranging from 10 to almost 30 min), during all or a portion of their lifetimes while simultaneously producing relatively high intracloud (IC) flash rates (>30 min−1 at peak). For both storms, radar reflectivity intensity and the production of hail were anticorrelated with the production of significant negative cloud-to-ground lightning. These observations are shown to be consistent with an elevated charge hypothesis and suggest a possible way of correlating updraft speed, hail, and storm severity to CG and IC flash rates.
Abstract
Concurrent measurements from the CSU-CHILL multiparameter Doppler radar, the Office National d’Etudes et de Recherches Aérospatiales VHF lightning interferometer, and the National Lightning Detection Network, obtained during phase A of the Stratosphere–Troposphere Experiments: Radiation, Aerosols, Ozone (STERAO-A) field project, provided a unique dataset with which to study the relationships between convective storm microphysics and associated lightning. Two storms have been examined in detail in this study: 10 and 12 July 1996. Both storms were long lived, existing in some form for over 4 h apiece, and produced very low cloud-to-ground (CG) lightning flash rates, in particular negative CG flash rates (generally <1 min−1 and often no CG flashes for periods ranging from 10 to almost 30 min), during all or a portion of their lifetimes while simultaneously producing relatively high intracloud (IC) flash rates (>30 min−1 at peak). For both storms, radar reflectivity intensity and the production of hail were anticorrelated with the production of significant negative cloud-to-ground lightning. These observations are shown to be consistent with an elevated charge hypothesis and suggest a possible way of correlating updraft speed, hail, and storm severity to CG and IC flash rates.