Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Troy J. Zaremba x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Troy J. Zaremba
,
Kaylee Heimes
,
Robert M. Rauber
,
Bart Geerts
,
Jeffrey R. French
,
Coltin Grasmick
,
Sarah A. Tessendorf
,
Lulin Xue
,
Katja Friedrich
,
Roy M. Rasmussen
,
Melvin L. Kunkel
, and
Derek R. Blestrud

Abstract

Updrafts in wintertime cloud systems over mountainous regions can be described as fixed, mechanically driven by the terrain under a given ambient wind and stability profile (i.e., vertically propagating gravity waves tied to flow over topography), and transient, associated primarily with vertical wind shear and conditional instability within passing weather systems. This analysis quantifies the magnitude of fixed and transient updraft structures over the Payette River basin sampled during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). Vertical motions were retrieved from Wyoming Cloud Radar measurements of radial velocity using the algorithm presented in Part I. Transient circulations were removed, and fixed orographic circulations were quantified by averaging vertical circulations along repeated cross sections over the same terrain during the campaign. Fixed orographic vertical circulations had magnitudes of 0.3–0.5 m s−1. These fixed vertical circulations were composed of a background circulation in which transient circulations were embedded. Transient vertical circulations are shown to be associated with transient wave motions, cloud-top generating cells, convection, and turbulence. Representative transient vertical circulations are illustrated, and data from rawinsondes over the Payette River basin are used to infer the relationship of the vertical circulations to shear and instability. Maximum updrafts are shown to exceed 5 m s−1 within Kelvin–Helmholtz waves, 4 m s−1 associated with transient gravity waves, 3 m s−1 in generating cells, 6 m s−1 in elevated convection, 4 m s−1 in surface-based deep convection, 5 m s−1 in boundary layer turbulence, and 9 m s−1 in shear-induced turbulence.

Free access
Kaylee Heimes
,
Troy J. Zaremba
,
Robert M. Rauber
,
Sarah A. Tessendorf
,
Lulin Xue
,
Kyoko Ikeda
,
Bart Geerts
,
Jeffrey French
,
Katja Friedrich
,
Roy M. Rasmussen
,
Melvin L. Kunkel
, and
Derek R. Blestrud

Abstract

In Part II, two classes of vertical motions, fixed (associated with vertically propagating gravity waves tied to flow over topography) and transient (associated primarily with vertical wind shear and conditional instability within passing weather systems), were diagnosed over the Payette River basin of Idaho during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). This paper compares vertical motions retrieved from airborne Doppler radial velocity measurements with those from a 900-m-resolution model simulation to determine the impact of transient vertical motions on trajectories of ice particles initiated by airborne cloud seeding. An orographic forcing index, developed to compare vertical motion fields retrieved from the radar with the model, showed that fixed vertical motions were well resolved by the model while transient vertical motions were not. Particle trajectories were calculated for 75 cross-sectional pairs, each differing only by the observed and modeled vertical motion field. Wind fields and particle terminal velocities were otherwise identical in both trajectories so that the impact of transient vertical circulations on particle trajectories could be isolated. In 66.7% of flight-leg pairs, the distance traveled by particles in the model and observations differed by less than 5 km with transient features having minimal impact. In 9.3% of the pairs, model and observation trajectories landed within the ideal target seeding elevation range (>2000 m), whereas, in 77.3% of the pairs, both trajectories landed below the ideal target elevation. Particles in the observations and model descended into valleys on the mountains’ lee sides in 94.2% of cases in which particles traveled less than 37 km.

Free access
Troy J. Zaremba
,
Robert M. Rauber
,
Bart Geerts
,
Jeffrey R. French
,
Sarah A. Tessendorf
,
Lulin Xue
,
Katja Friedrich
,
Courtney Weeks
,
Roy M. Rasmussen
,
Melvin L. Kunkel
, and
Derek R. Blestrud

Abstract

This paper examines the controls on supercooled liquid water content (SLWC) and drop number concentrations (Nt ,CDP) over the Payette River basin during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) campaign. During SNOWIE, 27.4% of 1-Hz in situ cloud droplet probe samples were in an environment containing supercooled liquid water (SLW). The interquartile range of SLWC, when present, was found to be 0.02–0.18 g m−3 and 13.3–37.2 cm−3 for Nt ,CDP, with the most extreme values reaching 0.40–1.75 g m−3 and 150–320 cm−3 in isolated regions of convection and strong shear-induced turbulence. SLWC and Nt ,CDP distributions are shown to be directly related to cloud-top temperature and ice particle concentrations, consistent with past research over other mountain ranges. Two classes of vertical motions were analyzed as potential controls on SLWC and Nt ,CDP, the first forced by the orography and fixed in space relative to the topography (stationary waves) and the second transient, triggered by vertical shear and instability within passing synoptic-scale cyclones. SLWC occurrence and magnitudes, and Nt ,CDP associated with fixed updrafts were found to be normally distributed about ridgelines when SLW was present. SLW was more likely to form at low altitudes near the terrain slope associated with fixed waves due to higher mixing ratios and larger vertical air parcel displacements at low altitudes. When considering transient updrafts, SLWC and Nt ,CDP appear more uniformly distributed over the flight track with little discernable terrain dependence as a result of time and spatially varying updrafts associated with passing weather systems. The implications for cloud seeding over the basin are discussed.

Free access
Lulin Xue
,
Courtney Weeks
,
Sisi Chen
,
Sarah A. Tessendorf
,
Roy M. Rasmussen
,
Kyoko Ikeda
,
Branko Kosovic
,
Dalton Behringer
,
Jeffery R. French
,
Katja Friedrich
,
Troy J. Zaremba
,
Robert M. Rauber
,
Christian P. Lackner
,
Bart Geerts
,
Derek Blestrud
,
Melvin Kunkel
,
Nick Dawson
, and
Shaun Parkinson

Abstract

A dry-air intrusion induced by the tropopause folding split the deep cloud into two layers resulting in a shallow orographic cloud with a supercooled liquid cloud top at around −15°C and an ice cloud above it on 19 January 2017 during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The airborne AgI seeding of this case was simulated by the WRF Weather Modification (WRF-WxMod) Model with different configurations. Simulations at different grid spacing, driven by different reanalysis data, using different model physics were conducted to explore the ability of WRF-WxMod to capture the properties of natural and seeded clouds. The detailed model–observation comparisons show that the simulation driven by ERA5 data, using Thompson–Eidhammer microphysics with 30% of the CCN climatology, best captured the observed cloud structure and supercooled liquid water properties. The ability of the model to correctly capture the wind field was critical for successful simulation of the seeding plume locations. The seeding plume features and ice number concentrations within them from the large-eddy simulations (LES) are in better agreement with observations than non-LES runs mostly due to weaker AgI dispersion associated with the finer grid spacing. Seeding effects on precipitation amount and impacted areas from LES seeding simulations agreed well with radar-derived values. This study shows that WRF-WxMod is able to simulate and quantify observed features of natural and seeded clouds given that critical observations are available to validate the model. Observation-constrained seeding ensemble simulations are proposed to quantify the AgI seeding impacts on wintertime orographic clouds.

Significance Statement

Recent observational work has demonstrated that the impact of airborne glaciogenic seeding of orographic supercooled liquid clouds is detectable and can be quantified in terms of the extra ground precipitation. This study aims, for the first time, to simulate this seeding impact for one well-observed case. The stakes are high: if the model performs well in this case, then seasonal simulations can be conducted with appropriate configurations after validations against observations, to determine the impact of a seeding program on the seasonal mountain snowpack and runoff, with more fidelity than ever. High–resolution weather simulations inherently carry uncertainty. Within the envelope of this uncertainty, the model compares very well to the field observations.

Full access
Troy J. Zaremba
,
Robert M. Rauber
,
Samuel Haimov
,
Bart Geerts
,
Jeffrey R. French
,
Coltin Grasmick
,
Kaylee Heimes
,
Sarah A. Tessendorf
,
Katja Friedrich
,
Lulin Xue
,
Roy M. Rasmussen
,
Melvin L. Kunkel
, and
Derek R. Blestrud

Abstract

Vertical motions over the complex terrain of Idaho’s Payette River basin were observed by the Wyoming Cloud Radar (WCR) during 23 flights of the Wyoming King Air during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) field campaign. The WCR measured radial velocity Vr , which includes the reflectivity-weighted terminal velocity of hydrometeors Vt , vertical air velocity w, horizontal wind contributions as a result of aircraft attitude deviations, and aircraft motion. Aircraft motion was removed through standard processing. To retrieve vertical radial velocity W, Vr was corrected using rawinsonde data and aircraft attitude measurements; w was then calculated by subtracting the mean W ( W ¯ ) at a given height along a flight leg long enough for W ¯ to equal the mean reflectivity-weighted terminal velocity V t ¯ at that height. The accuracy of the w and V t ¯ retrievals were dependent on satisfying assumptions along a given flight leg that the winds at a given altitude above/below the aircraft did not vary, the vertical air motions at a given altitude sum to 0 m s−1, and V t ¯ at a given altitude did not vary. The uncertainty in the w retrieval associated with each assumption is evaluated. Case studies and a projectwide summary show that this methodology can provide estimates of w that closely match gust probe measurements of w at the aircraft level. Flight legs with little variation in equivalent reflectivity factor at a given height and large horizontal echo extent were associated with the least retrieval uncertainty. The greatest uncertainty occurred in regions with isolated convective turrets or at altitudes where split cloud layers were present.

Free access