Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Veronica Tamsitt x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Veronica Tamsitt
,
Lynne D. Talley
,
Matthew R. Mazloff
, and
Ivana Cerovečki

Abstract

The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Full access
Veronica Tamsitt
,
Ivana Cerovečki
,
Simon A. Josey
,
Sarah T. Gille
, and
Eric Schulz

Abstract

Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation.

Free access
Ivana Cerovečki
,
Andrew J. S. Meijers
,
Matthew R. Mazloff
,
Sarah T. Gille
,
Veronica M. Tamsitt
, and
Paul R. Holland

Abstract

The top 2000 m of the Southern Ocean has freshened and warmed over recent decades. However, the high-latitude (south of 50°S) southeast Pacific was observed to be cooler and fresher in the years 2008–10 compared to 2005–07 over a wide depth range including surface, mode, and intermediate waters. The causes and impacts of this event are analyzed using the ocean–sea ice data-assimilating Southern Ocean State Estimate (SOSE) and observationally based products. In 2008–10, a strong positive southern annular mode coincided with a negative El Niño–Southern Oscillation and a deep Amundsen Sea low. Enhanced meridional winds drove strong sea ice export from the eastern Ross Sea, bringing large amounts of ice to the Amundsen Sea ice edge. In 2008, together with increased precipitation, this introduced a strong freshwater anomaly that was advected eastward by the Antarctic Circumpolar Current (ACC), mixing along the way. This anomaly entered the ocean interior not only as Antarctic Intermediate Water, but also as lighter Southeast Pacific Subantarctic Mode Water (SEPSAMW). A numerical particle release experiment carried out in SOSE showed that the Ross Sea sector was the dominant source of particles reaching the SEPSAMW formation region. This suggests that large-scale climate fluctuations can induce strong interannual variability of volume and properties of SEPSAMW. These fluctuations act at different time scales: instantaneously via direct forcing and also lagged over advective time scales of several years from upstream regions.

Full access