Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W. E. Fry x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
J. A. Bruhn, W. E. Fry, and G. W. Fick

Abstract

A computer simulation model was constructed to supply daily weather data to a plant disease management model for potato late blight. In the weather model Monte Carlo techniques were employed to generate daily values of precipitation, maximum temperature, minimum temperature, minimum relative humidity and total solar radiation. Each weather variable is described by a known theoretical probability distribution but the values of the parameters describing each distribution are dependent on the occurrence of rainfall. Precipitation occurrence is described by a first-order Markov chain. The amount of rain, given that rain has occurred, is described by a gamma probability distribution. Maximum and minimum temperature are simulated with a trivariate normal probability distribution involving maximum temperature on the previous day, maximum temperature on the current day and minimum temperature on the current day. Parameter values for this distribution are dependent on the occurrence of rain on the previous day. Both minimum relative humidity and total solar radiation are assumed to be normally distributed. The values of the parameters describing the distribution of minimum relative humidity is dependent on rainfall occurrence on the previous day and current day. Parameter values for total solar radiation are dependent on the occurrence of rain on the current day. The assumptions made during model construction were found to be appropriate for actual weather data from Geneva, New York. The performance of the weather model was evaluated by comparing the cumulative frequency distributions of simulated weather data with the distributions of actual weather data from Geneva, New York and Fort Collins, Colorado. For each location, simulated weather data were similar to actual weather data in terms of mean response, variability and autocorrelation. The possible applications of this model when used with models of other components of the agro-ecosystem are discussed.

Full access
Kenneth J. Davis, Edward V. Browell, Sha Feng, Thomas Lauvaux, Michael D. Obland, Sandip Pal, Bianca C. Baier, David F. Baker, Ian T. Baker, Zachary R. Barkley, Kevin W. Bowman, Yu Yan Cui, A. Scott Denning, Joshua P. DiGangi, Jeremy T. Dobler, Alan Fried, Tobias Gerken, Klaus Keller, Bing Lin, Amin R. Nehrir, Caroline P. Normile, Christopher W. O’Dell, Lesley E. Ott, Anke Roiger, Andrew E. Schuh, Colm Sweeney, Yaxing Wei, Brad Weir, Ming Xue, and Christopher A. Williams

Abstract

The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1,140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five 6-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair-weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America dataset and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise subcontinental GHG flux estimates.

Full access