Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Wei Gong x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Yang Lang, Aizhong Ye, Wei Gong, Chiyuan Miao, Zhenhua Di, Jing Xu, Yu Liu, Lifeng Luo, and Qingyun Duan


Seasonal predictions of precipitation and surface air temperature from the Climate Forecast System, version 2 (CFSv2), are evaluated against gridded daily observations from 1982 to 2007 over 17 hydroclimatic regions in China. The seasonal predictive skill is quantified with skill scores including correlation coefficient, RMSE, and mean bias for spatially averaged seasonal precipitation and temperature forecasts for each region. The evaluation focuses on identifying regions and seasons where significant skill exists, thus potentially contributing to skill in hydrological prediction. The authors find that the predictive skill of CFSv2 precipitation and temperature forecasts has a stronger dependence on seasons and regions than on lead times. Both temperature and precipitation forecasts show higher skill from late summer [July–September (JAS)] to late autumn [October–December (OND)] and from winter [December–February (DJF)] to spring [March–May (MAM)]. The skill of CFSv2 precipitation forecasts is low during summer [June–August (JJA)] and winter (DJF) over all of China because of low potential predictability of the East Asian summer monsoon and the East Asian winter monsoon for China. As expected, temperature predictive skill is much higher than precipitation predictive skill in all regions. As observed precipitation shows significant correlation with the Oceanic Niño index over western, southwestern, and central China, the authors found that CFSv2 precipitation forecasts generally show similar correlation pattern, suggesting that CFSv2 precipitation forecasts can capture ENSO signals. This evaluation suggests that using CFSv2 forecasts for seasonal hydrological prediction over China is promising and challenging.

Full access