Search Results

You are looking at 1 - 10 of 55 items for

  • Author or Editor: Wei Zhao x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Wei Yang
,
Hao Wei
, and
Liang Zhao

Abstract

On the basis of measurements from an observing mooring system, the observational evidence of parametric subharmonic instability (PSI) that transfers energy from semidiurnal internal tides (ITs) to the subharmonic waves at the East China Sea continental shelf slope is presented for the first time. Although the mooring station is very close to the energetic semidiurnal IT generation site, about 76% of the observed shear variance is contained in the near-inertial band, which is found to have comparable upward- and downward-propagating energy components. Bispectra and bicoherence estimates further confirm the occurrence of PSI transferring energy from the low-mode M2 ITs (vertical wavelength of ~1000 m) to high-mode subharmonic waves (vertical wavelength of ~200 m). The calculated energy transfer rate g reveals an averaged net value of ~5 × 10−9 W kg−1. Strong temporal variation of g is found that is not exactly in phase with the semidiurnal energy flux. After looking into the local vorticity fields, it is strongly suggested that the varying background relative vorticity associated with the evolving Kuroshio has modified the efficiency of PSI at the mooring location through changing the local effective inertial frequency.

Open access
Jiwei Tian
,
Qingxuan Yang
, and
Wei Zhao

Abstract

Profiles of current velocity, temperature, and salinity were obtained in the Internal Wave and Mixing Experiment in the South China Sea (SCS), the Luzon Strait, and the North Pacific. The observations are examined for evidence of enhanced diapycnal mixing in the SCS, which reaches O(10−3 m2 s−1) in magnitude. Results from independent casts reveal that diapycnal diffusivity in the SCS and the Luzon Strait is elevated by two orders of magnitude over that of the smooth bathymetry in the North Pacific, which are typical of background values in an open ocean. The vertical distribution of diapycnal diffusivity is nonuniform in the SCS, exhibiting higher values at depths greater than about 1000 m. This result compares favorably with the direct microstructure measurements at four stations in the SCS. Velocity and density profiles are combined to estimate the internal tide energy flux generated in the Luzon Strait and directed into the SCS. The energy amounts to 10 GW, most of which is rationalized to be the potential energy source for enhanced mixing in the SCS.

Full access
Wei Mei
,
Shang-Ping Xie
, and
Ming Zhao

Abstract

Interannual–decadal variability of tropical cyclone (TC) track density over the North Atlantic (NA) between 1979 and 2008 is studied using observations and simulations with a 25-km-resolution version of the High Resolution Atmospheric Model (HiRAM) forced by observed sea surface temperatures (SSTs). The variability on decadal and interannual time scales is examined separately. On both time scales, a basinwide mode dominates, with the time series being related to variations in seasonal TC counts. On decadal time scales, this mode relates to SST contrasts between the tropical NA and the tropical northeast Pacific as well as the tropical South Atlantic, whereas on interannual time scales it is controlled by SSTs over the central–eastern equatorial Pacific and those over the tropical NA. The temporal evolution of the spatial distribution of track density is further investigated by normalizing the track density with seasonal TC counts. On decadal time scales, two modes emerge: one is an oscillation between track density over the U.S. East Coast and midlatitude ocean and that over the Gulf of Mexico and the Caribbean Sea and the other oscillates between low and middle latitudes. They might be driven by the preceding winter North Atlantic Oscillation and concurrent Atlantic meridional mode, respectively. On interannual time scales, two similar modes are present in observations but are not well separated in HiRAM simulations. Finally, the internal variability and predictability of TC track density are explored and discussed using HiRAM ensemble simulations. The results suggest that basinwide total TC counts/days are much more predictable than local TC occurrence, posing a serious challenge to the prediction and projection of regional TC threats, especially the U.S. landfall hurricanes.

Full access
Wei Yang
,
Meilin Zhu
,
Xiaofeng Guo
, and
Huabiao Zhao

Abstract

Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers, and 6 national meteorological stations in 6 different catchments, this study presents air temperature variability in different glacierized and nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold and dry northwestern Tibetan Plateau and the lowest LRs located on the warm and humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree-days, particularly with respect to large glaciers with a long-flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.

Full access
Qingxuan Yang
,
Wei Zhao
,
Xinfeng Liang
, and
Jiwei Tian

Abstract

A three-dimensional distribution of turbulent mixing in the South China Sea (SCS) is obtained for the first time, using the Gregg–Henyey–Polzin parameterization and hydrographic observations from 2005 to 2012. Results indicate that turbulent mixing generally increases with depth in the SCS, reaching the order of 10−2 m2 s−1 at depth. In the horizontal direction, turbulence is more active in the northern SCS than in the south and is more active in the east than the west. Two mixing “hotspots” are identified in the bottom water of the Luzon Strait and Zhongsha Island Chain area, where diapycnal diffusivity values are around 3 × 10−2 m2 s−1. Potential mechanisms responsible for these spatial patterns are discussed, which include internal tide, bottom bathymetry, and near-inertial energy.

Full access
Qingxuan Yang
,
Wei Zhao
,
Min Li
, and
Jiwei Tian

Abstract

Turbulent mixing in the northwestern Pacific Ocean is estimated using the Gregg–Henyey–Polzin scaling and Thorpe-scale methods. The data sources are the hydrographic observations during October and November 2005. The results reveal clear spatial patterns of turbulent mixing in the study area. High-level diffusivity on the order of 10−3 m2 s−1 or larger is found within the western boundary region, where the Kuroshio flows northward. The width covered by this prominent diffusivity shows an increase from 12° to 18°N. The horizontal distribution of depth-averaged diffusivity in the top 500 m shows enhanced mixing with diffusivity of 6 × 10−3 m2 s−1 south of 9°N where the Mindanao Eddy remains a quasi-permanent feature. These two distinct patterns of diffusivity distribution suggest that the Kuroshio and the Mindanao Eddy are likely responsible for the elevated turbulent mixing in the study area.

Full access
Zhiwei Zhang
,
Wei Zhao
,
Bo Qiu
, and
Jiwei Tian

Abstract

Sheddings of Kuroshio Loop Current (KLC) eddies in the northeastern South China Sea (SCS) are investigated using mooring arrays, multiple satellite data, and data-assimilative HYCOM products. Based on altimeter sea surface heights between 1992 and 2014, a total of 19 prominent KLC eddy shedding (KLCES) events were identified, among which four events were confirmed by the concurrent moored and satellite observations. Compared to the leaping behavior of Kuroshio, KLCES is a relatively short-duration phenomenon that primarily occurs in boreal autumn and winter. The KLC and its shedding anticyclonic eddy (AE) trap a large amount of Pacific water with high temperature–salinity and low chlorophyll concentration in the upper layer. The corresponding annual-mean transport caused by KLCES reaches 0.24–0.38 Sv (1 Sv ≡ 106 m3 s−1), accounting for 6.8%–10.8% of the upper-layer Luzon Strait transport. Altimeter-based statistics show that among ~90% of the historical KLCES events, a cyclonic eddy (CE) is immediately generated behind the AE southwest of Taiwan. Both energetics and stability analyses reveal that because of its large horizontal velocity shear southwest of Taiwan, the northern branch of KLC is strongly unstable and the barotropic instability of KLC constitutes the primary generation mechanism for the CE. After CE is generated, it quickly grows and gradually migrates southward, which in turn facilitates the detachment of AE from KLC. The intrinsic relationship between KLC and CE explains well why eddy pairs are commonly observed in the region southwest of Taiwan.

Full access
Zhou Shenghui
,
Wei Ming
,
Wang Lijun
,
Zhao Chang
, and
Zhang Mingxu

Abstract

The sensitivity of the ill-conditioned coefficient matrix (CM) and the size of the analysis volume on the retrieval accuracy in the volume velocity processing (VVP) method are analyzed. By estimating the upper limit of the retrieval error and analyzing the effects of neglected parameters on retrieval accuracy, the simplified wind model is found to decrease the difficulty in solving and stabilizing the retrieval results, even though model errors would be induced by neglecting partial parameters. Strong linear correlation among CM vectors would cause an ill-conditioned matrix when more parameters are selected. By using exact coordinate data and changing the size of the analysis volume, the variation of the condition number indicates that a large volume size decreases the condition number, and the decrease caused by increasing the number of volume gates is larger than that caused by increasing the sector width. Using the spread of errors in the solution, a demonstration using mathematical deduction is provided to explain how a large analysis volume can improve retrieval accuracy. A test with a uniform wind field is used to demonstrate these conclusions.

Full access
Hong-Li Ren
,
Yuntao Wei
, and
Shuo Zhao

Abstract

The real-time multivariate Madden–Julian oscillation (MJO) (RMM) index has now been widely applied as a standard in operational subseasonal prediction and monitoring. Its calculation procedures involve the extraction of major intraseasonal variability (ISV) by subtracting the prior 120-day mean. However, this study uncovers that such a real-time strategy artificially creates unwanted low-frequency variability (LFVartificial) that might cause nonnegligible influences on the RMM amplitude and phase. Compared to the real LFV, the LFVartificial explains more (∼70% in boreal summer) of the residual LFV (LFVresidual) in the RMM index. It occupies 33% of all days that the LFVresidual explains more than one-half of total RMM amplitude, 19% that the LFV contribution exceeds ISV, and 10% that the LFVartificial-associated RMM amplitude surpasses 0.8. The RMM-defined “MJO” is obscured by the LFVresidual in such a way that the eastward-propagating mode is stronger and bigger with a slower phase speed, as compared with the “true” MJO derived from the 20–100-day filtered data. The interference effects of LFVresidual on the MJO might be particularly strong when the background state is changing rapidly with time. However, these issues can be well avoided when one chooses to remove the centered 120-day mean, as evidenced by the largely reduced three percentages (17%, 8%, and 1%) mentioned above in the so-derived index. These results give us a reminder that more attention should be paid to monitoring or predicting an MJO using the RMM index in a rapidly changing low-frequency background or in the boreal summer.

Significance Statement

The real-time multivariate MJO (RMM) index has been widely applied in the monitoring and prediction of the MJO, the major tropical intraseasonal variability influencing global weather and climate. Using observational analysis, we reveal that there exist such scenarios (∼16%) when large-amplitude RMM indices do not represent a strong MJO, mainly due to the obscuring effect of residual, while largely artificial, low-frequency variability introduced by the RMM calculation procedures. This finding is of great significance as it informs the research community that serious caution should be given when relating large RMM amplitude to the MJO, especially in a condition when the low-frequency background state is rapidly changing with time or in the boreal summer.

Free access
Li Tao
,
Tim Li
,
Yuan-Hui Ke
, and
Jiu-Wei Zhao

Abstract

A Pacific–Japan (PJ) pattern index is defined based on the singular value decomposition (SVD) analysis of summertime 500-hPa height in East Asia and precipitation in the tropical western North Pacific (WNP). The time series of this PJ index shows clearly the interannual and interdecadal variations since 1948. Idealized atmospheric general circulation model (AGCM) experiments were carried out to understand the remote and local SST forcing in causing the interannual variations of the PJ pattern and interdecadal variations of the PJ-like pattern. It is found that the PJ interannual variation is closely related to El Niño–Southern Oscillation (ENSO). A basinwide warming occurs in the tropical Indian Ocean (TIO) during El Niño mature winter. The TIO warming persists from the El Niño peak winter to the succeeding summer. Meanwhile, a cold SST anomaly (SSTA) appears in the eastern WNP and persists from the El Niño mature winter to the succeeding summer. Idealized AGCM experiments that separate the TIO and WNP SSTA forcing effects show that both the remote eastern TIO forcing and local WNP SSTA forcing are important in affecting atmospheric heating anomaly in the WNP monsoon region, which further impacts the PJ interannual teleconnection pattern over East Asia. In contrast to the interannual variation, the interdecadal change of the PJ-like pattern is primarily affected by the interdecadal change of SST in the TIO rather than by the local SSTA in the WNP.

Full access