Search Results

You are looking at 1 - 10 of 35 items for :

  • Author or Editor: Yang Lu x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Haijun Yang and Lu Wang

Abstract

The tropical oceanic response to the extratropical thermal forcing is quantitatively estimated in a coupled climate model. This work focuses on comparison of the responses between the tropical Atlantic and Pacific. Under the same extratropical forcing, the tropical sea surface temperature responses are comparable. However, the responses in the tropical subsurface in the two oceans are distinct. The tropical subsurface response in the Atlantic can be twice of that in the Pacific. The maximum subsurface temperature change in the tropical Pacific occurs in the eastern lower thermocline, while that in the tropical Atlantic occurs in the west and well below the lower thermocline. The different responses in the tropical Atlantic and Pacific are closely related to the different changes in the meridional overturning circulations. The Pacific shallow overturning circulation, or the subtropical cell, tends to slow down (speed up) in response to the extratropical warming (cooling) forcing. The changes in the upwelling in the eastern equatorial Pacific as well as the shallow subduction from the extratropical southern Pacific along the eastern boundary are accountable for the eastern Pacific temperature change. The Atlantic overturning circulation consists of the shallow subtropical cell and the deep thermohaline circulation. A weakened thermohaline circulation will result in a strengthened northern subtropical cell, in which the change in the lower branch, or the low-latitude North Brazil Current, can cause strong response below the western tropical thermocline. Here the coastal Kelvin wave along the western boundary on the intermediate isopycnal level also plays an important role in the equatorward conveying of the climate anomalies in the mid-to-high-latitude Atlantic, particularly during the initial stage of the extratropical forcing.

Full access
Qingyong Li, Weitao Lu, and Jun Yang

Abstract

Cloud detection is the precondition for deriving other information (e.g., cloud cover) in ground-based sky imager applications. This paper puts forward an effective cloud detection approach, the Hybrid Thresholding Algorithm (HYTA) that fully exploits the benefits of the combination of fixed and adaptive thresholding methods. First, HYTA transforms an input color cloud image into a normalized blue/red channel ratio image that can keep a distinct contrast, even with noise and outliers. Then, HYTA identifies the ratio image as either unimodal or bimodal according to its standard deviation, and the unimodal and bimodal images are handled by fixed and minimum cross entropy (MCE) thresholding algorithms, respectively. The experimental results demonstrate that HYTA shows an accuracy of 88.53%, which is far higher than those of either fixed or MCE thresholding alone. Moreover, HYTA is also verified to outperform other state-of-the-art cloud detection approaches.

Full access
Yang Zhou, Keith R. Thompson, and Youyu Lu

Abstract

A regression-based modeling approach is described for mapping the dependence of atmospheric state variables such as surface air temperature (SAT) on the Madden–Julian oscillation (MJO). For the special case of a linear model the dependence can be described by two maps corresponding to the amplitude and lag of the mean atmospheric response with respect to the MJO. In this sense the method leads to a more parsimonious description than traditional compositing, which usually results in eight maps, one for each MJO phase. Another advantage of the amplitude and phase maps is that they clearly identify propagating signals, and also regions where the response is strongly amplified or attenuated. A straightforward extension of the linear model is proposed to allow the amplitude and phase of the response to vary with the amplitude of the MJO or indices that define the background state of the atmosphere–ocean system. Application of the approach to global SAT for boreal winter clearly shows the propagation of MJO-related signals in both the tropics and extratropics and an enhanced response over eastern North America and Alaska (further enhanced during La Niña years). The SAT response over Alaska and eastern North America is caused mainly by horizontal advection related to variations in shore-normal surface winds that, in turn, can be traced (via signals in the 500-hPa geopotential height) back to MJO-related disturbances in the tropics.

Full access
Yang Gao, Jian Lu, and L. Ruby Leung

Abstract

This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multimodel ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large intermodel variability strongly correlated with the intermodel spread of historical near-surface westerly jet position. Under representative concentration pathway 8.5 (RCP8.5), AR frequency is projected to increase significantly by the end of this century, with 127%–275% increase at peak AR frequency regions (45°–55°N). While thermodynamics plays a dominant role in the future increase of ARs, wind changes associated with the midlatitude jet shifts also significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model-projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase future AR days over the equatorward flank above the increases from thermodynamical effects. Compared to the present, both total and extreme precipitation induced by ARs in the future contribute more to the seasonal mean and extreme precipitation, primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.

Full access
Hui Li, Panmao Zhai, Yang Chen, and Er Lu

Abstract

In this study, cases of the East Asia–Pacific (EAP) teleconnection pattern not responsible for persistent precipitation processes in the Yangtze River valley (YRV) have been investigated. The results suggest that such a type of EAP pattern has some linkage with persistent precipitation processes in south China (SC) with the following properties: 1) in response to the negative SSTAs and anticyclone near the Philippines, the meridional energy propagates from the low latitudes over the north of the Philippines; 2) the western Pacific subtropical high (WPSH) then intensifies and extends westward; 3) a meridional triple structure of the EAP teleconnection pattern is established; 4) at the same time, the cyclonic circulation over northeastern China introduces cold and dry air to the lower latitudes, merging with the water vapor into SC and leading to heavy precipitation from the fringe of the WPSH, the South China Sea, and the Bay of Bengal and the combination of systems persists for at least 3 days, leading to the persistent precipitation processes in SC; and 5) compared with the EAP teleconnection responsible for the precipitation in YRV, the positions of the three centers in the mid- and low latitudes are more southerly located than the YRV EAP centers. Further study indicates that the ocean surface heat conditions in the areas near the Philippines seem to be important in affecting the EAP teleconnection pattern for persistent precipitation processes in SC. Finally, all of the cases with persistent precipitation in SC during 1961–2010 linked with the EAP pattern have been investigated; the results are consistent with the above conclusions.

Full access
Shan He, Song Yang, Mengmeng Lu, and Zhenning Li

Abstract

The Afro-Eurasian intermediate-frequency atmospheric teleconnection conveys meteorological signals zonally, leads to various atmospheric variations, and causes extreme events along its path. This study, aimed at demonstrating the characteristics of the teleconnection, reveals that the teleconnection accounts for nearly half of the atmospheric variability and significantly influences different meteorological fields. With the propagation of signals associated with the teleconnection, local weather varies from prolonged dry and warm days to extended wet and cold days. El Niño–Southern Oscillation (ENSO) modulates the interannual variation of the teleconnection: it becomes more active and its downstream pattern shifts southward during El Niño events. Two responsible mechanisms are proposed for the ENSO modulation: the eddy-to-eddy interaction that leads to the change in the activeness of the teleconnection and the waveguide effect that accounts for the shift of the teleconnection. First, the El Niño–related Atlantic anomalies of the Rossby wave train and storm track amplify the Atlantic disturbances of the intermediate frequency and thus the activeness of the teleconnection. Second, during El Niño years, the East Asian jet stream shifts southward, resulting in the southward shifts of the downstream waveguide effect and thus the downstream pattern. This study also demonstrates that when investigating an atmospheric mode or its impacts, the signals of different time scales should be separated and the cross-frequency interactive systems necessitate examinations.

Open access
Jun Yang, Zhiqing Zhang, Caiying Wei, Feng Lu, and Qiang Guo

Abstract

China is developing a new generation of geostationary meteorological satellites called Fengyun-4 (FY-4), which is planned for launch beginning in 2016. Following upon the current FY-2 satellite series, FY-4 will carry four new instruments: the Advanced Geosynchronous Radiation Imager (AGRI), the Geosynchronous Interferometric Infrared Sounder (GIIRS), the Lightning Mapping Imager (LMI), and the Space Environment Package (SEP). The first satellite of the FY-4 series launched on 11 December 2016 is experimental, and the following four or more satellites will be operational.

The main objectives of the FY-4 series are to monitor rapidly changing weather systems and to improve warning and forecasting capabilities. The FY-4 measurements are aimed at accomplishing 1) high temporal and spatial resolution imaging in 14 spectral bands from the visible, near-infrared, and infrared (IR) spectral regions; 2) lightning imaging; and 3) high-spectral-resolution IR sounding observations over China and adjacent regions. FY-4 will also enhance the space weather monitoring and warning with SEP. Current products from FY-2 will be improved by FY-4, and a number of new products will also be introduced. FY-4’s sounding and imaging data will be used to improve applications in a wide range of ocean, land, and atmosphere monitoring plus forecasting extreme weather (especially typhoons and thunderstorms); overall, FY-4 will contribute to more accurate understanding and forecasting of China’s weather, climate, environment, and natural disasters. This new generation of Chinese geostationary weather satellites is being developed in parallel with the new generation of geostationary meteorological satellite systems from the international community of satellite providers and is intended to be an important contribution to the global observing system.

Full access
Kaiqiang Deng, Song Yang, Mingfang Ting, Chundi Hu, and Mengmeng Lu

Abstract

The mid-Pacific trough (MPT), occurring in the upper troposphere during boreal summer, acts as an atmospheric bridge connecting the climate variations over Asia, the Pacific, and North America. The first (second) mode of empirical orthogonal function analysis of the MPT, which accounts for 20.3% (13.4%) of the total variance, reflects a change in its intensity on the southwestern (northeastern) portion of the trough. Both modes are significantly correlated with the variability of tropical Pacific sea surface temperature (SST). Moreover, the first mode is affected by Atlantic SST via planetary waves that originate from the North Atlantic and propagate eastward across the Eurasian continent, and the second mode is influenced by the Arctic sea ice near the Bering Strait by triggering an equatorward wave train over the northeast Pacific.

A stronger MPT shown in the first mode is significantly linked to drier and warmer conditions in the Yangtze River basin, southern Japan, and the northern United States and wetter conditions in South Asia and northern China, while a stronger MPT shown in the second mode is associated with a drier and warmer southwestern United States. In addition, an intensified MPT (no matter whether in the southwestern or the northeastern portion) corresponds to more tropical cyclones (TCs) over the western North Pacific (WNP) and fewer TCs over the eastern Pacific (EP) in summer, which is associated with the MPT-induced ascending and descending motions over the WNP and the EP, respectively.

Open access
Qin Wen, Kristofer Döös, Zhengyao Lu, Zixuan Han, and Haijun Yang

ABSTRACT

The role of the Tibetan Plateau (TP) in El Niño–Southern Oscillation (ENSO) variability is investigated using coupled model experiments with different topography setups. Removing the TP results in weakened trade winds in the tropical Pacific, an eastward shift of atmospheric convection center, a shallower mixed layer in the equatorial Pacific, and a flattened equatorial thermocline, which leads to an El Niño–like sea surface temperature (SST) response. In association with these mean climate changes in the tropical atmosphere–ocean system, the ENSO variability exhibits a much stronger amplitude in the world without the TP. Detailed diagnoses reveal that in the absence of the TP, both thermocline feedback in the eastern equatorial Pacific and Ekman pumping feedback in the central-eastern equatorial Pacific are enhanced substantially, leading to stronger ENSO variability. The changes of these two feedbacks are caused by the eastward shift of the atmospheric convection center and enhanced ocean sensitivity; the latter is due to the shallower mixed layer and flattened thermocline. This study suggests that the presence of the TP may be of fundamental importance for modern-day tropical climate variability; namely, the TP may have played a role in suppressing ENSO variability.

Open access
Yang Lu, Jianzhi Dong, and Susan C. Steele-Dunne

Abstract

The spatial heterogeneity and temporal variation of soil moisture and surface heat fluxes are key to many geophysical and environmental studies. It has been demonstrated that they can be mapped by assimilating soil thermal and wetness information into surface energy balance models. The aim of this work is to determine whether enhancing the spatial resolution or temporal sampling frequency of soil moisture data could improve soil moisture or surface heat flux estimates. Two experiments are conducted in an area mainly covered by grassland, and land surface temperature (LST) observations from the Geostationary Operational Environmental Satellite (GOES) mission are assimilated together with either an enhanced L-band passive soil moisture product (9 km, 2–3 days) from the Soil Moisture Active Passive (SMAP) mission or a merged product (36 km, quasi-daily) from the SMAP and the Soil Moisture Ocean Salinity (SMOS) mission. The results suggest that the availability of soil moisture observations is increased by 41% after merging data from the SMAP and the SMOS missions. A comparison with results from a previous study that assimilated a coarser SMAP soil moisture product (36 km, 2–3 days) suggests that enhancing the temporal sampling frequency of soil moisture observations leads to improved soil moisture estimates at both the surface and root zone, and the largest improvement is seen in the bias metric (0.008 and 0.007 m3 m−3 on average at the surface and root zone, respectively). Enhancing the spatial resolution, however, does not significantly improve soil moisture estimates, particularly at the surface. Surface heat flux estimates from assimilating soil moisture data of different spatial or temporal resolutions are very similar.

Full access