Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: Yao Li x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Zhigang Yao
,
Jun Li
,
Jinlong Li
, and
Hong Zhang

Abstract

An accurate land surface emissivity (LSE) is critical for the retrieval of atmospheric temperature and moisture profiles along with land surface temperature from hyperspectral infrared (IR) sounder radiances; it is also critical to assimilating IR radiances in numerical weather prediction models over land. To investigate the impact of different LSE datasets on Atmospheric Infrared Sounder (AIRS) sounding retrievals, experiments are conducted by using a one-dimensional variational (1DVAR) retrieval algorithm. Sounding retrievals using constant LSE, the LSE dataset from the Infrared Atmospheric Sounding Interferometer (IASI), and the baseline fit dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS) are performed. AIRS observations over northern Africa on 1–7 January and 1–7 July 2007 are used in the experiments. From the limited regional comparisons presented here, it is revealed that the LSE from the IASI obtained the best agreement between the retrieval results and the ECMWF reanalysis, whereas the constant LSE gets the worst results when the emissivities are fixed in the retrieval process. The results also confirm that the simultaneous retrieval of atmospheric profile and surface parameters could reduce the dependence of soundings on the LSE choice and finally improve sounding accuracy when the emissivities are adjusted in the iterative retrieval. In addition, emissivity angle dependence is investigated with AIRS radiance measurements. The retrieved emissivity spectra from AIRS over the ocean reveal weak angle dependence, which is consistent with that from an ocean emissivity model. This result demonstrates the reliability of the 1DVAR simultaneous algorithm for emissivity retrieval from hyperspectral IR radiance measurements.

Full access
Xiaohui Wang
,
Tim Li
, and
Suxiang Yao

Abstract

While enhanced rainbands progressed northward in East Asia from June to August during the regular El Niño decaying summer, strengthened rainbands were only observed in the earlier summer and disappeared in August in the super El Niño composite. The cause of this distinctive feature is investigated through a combined observational and modeling study. The relative roles of the mean state and anomalous heating in causing the northward progression in the regular El Niño group are assessed through idealized numerical experiments. The result shows that the monthly evolving mean state is more important, while the anomalous forcing also plays a role. The distinctive rainfall feature in the super El Niño composite was primarily contributed by the 1982/83 and 2015/16 events, whereas the rainband evolution in 1998 resembled the regular El Niño composite. The cause of the different rainfall pattern in August among the super El Niño events is further investigated. A marked difference exists in the tropical sea surface temperature anomaly (SSTA) and associated anomalous precipitation patterns. A low-level cyclonic (anticyclonic) anomaly appeared south of Japan in August 1983 and 2016 (1998), inducing northerly (southerly) anomalies and thus suppressed (enhanced) rainfall in eastern China. Whereas an anomalous anticyclone in the western North Pacific (WNP) is a typical response to an El Niño during its mature and decaying phases, the formation of a cyclonic anomaly in the WNP resulted from anomalous enthalpy advection associated with the eastward retreat of an anomalous anticyclone triggered by a local cold SSTA belt in August 1983 and from a Pacific meridional mode (PMM)-like positive SSTA pattern in August 2016.

Free access
Yao Xu
,
Hailun He
,
Jinbao Song
,
Yijun Hou
, and
Funing Li

Abstract

Buoy-based observations of surface waves during three typhoons in the South China Sea were used to obtain the wave characteristics. With the local wind speeds kept below 35 m s−1, the surface waves over an area with a radius 5 times that of the area in which the maximum sustained wind was found were mainly dominated by wind-wave components, and the wave energy distribution was consistent with fetch-limited waves. Swells dominated the surface waves at the front of and outside the central typhoon region. Next, the dynamics of the typhoon waves were studied numerically using a state-of-the-art third-generation wave model. Wind forcing errors made a negligible contribution to the surface wave results obtained using hindcasting. Near-realistic wind fields were constructed by correcting the idealized wind vortex using in situ observational data. If the different sets of source terms were further considered for the forcing stage of the typhoon, which was defined as the half inertial period before and after the typhoon arrival time, the best model performance had mean relative biases and root-mean-square errors of −0.7% and 0.76 m, respectively, for the significant wave height, and −3.4% and 1.115 s, respectively, for the peak wave period. Different sets of source terms for wind inputs and whitecapping breaking dissipation were also used and the results compared. Finally, twin numerical experiments were performed to investigate the importance of nonlinear wave–wave interactions on the spectrum formed. There was evidence that nonlinear wave–wave interactions efficiently transfer wave energy from high frequencies to low frequencies and prevent double-peak structures occurring in the frequency-based spectrum.

Full access
Ruibo Lei
,
Zhijun Li
,
Yanfeng Cheng
,
Xin Wang
, and
Yao Chen

Abstract

High-precision ice thickness observations are required to gain a better understanding of ocean–ice–atmosphere interactions and to validate numerical sea ice models. A new apparatus for monitoring sea ice and snow thickness has been developed, based on the magnetostrictive-delay-line (MDL) principle for positioning sensors. This system is suited for monitoring fixed measurement sites on undeformed ice. The apparatus presented herein has been tested on landfast ice near Zhongshan Station, East Antarctica, for about 6 months during the austral autumn and winter of 2006; valid data records from the deployment are available for more than 90% of the deployment’s duration. The apparatus’s precision has been estimated to be ±0.002 m for the deployment. Therefore, it is possible that this apparatus may become a standard for sea ice/snow thickness monitoring.

Full access
Shiyuan Zhong
,
Ju Li
,
C. David Whiteman
,
Xindi Bian
, and
Wenqing Yao

Abstract

The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with the North American Regional Reanalysis dataset. Potential mechanisms for the development of strong winds in the valley are examined.

Contrary to the common belief that strong winds in the Owens Valley are westerly downslope windstorms that develop on the eastern slope of the Sierra Nevada, strong westerly winds are rare in the valley. Instead, strong winds are highly bidirectional, blowing either up (northward) or down (southward) the valley axis. High wind events are most frequent in spring and early fall and they occur more often during daytime than during nighttime, with a peak frequency in the afternoon. Unlike thermally driven valley winds that blow up valley during daytime and down valley during nighttime, strong winds may blow in either direction regardless of the time of the day. The southerly up-valley winds appear most often in the afternoon, a time when there is a weak minimum of northerly down-valley winds, indicating that strong wind events are modulated by local along-valley thermal forcing.

Several mechanisms, including downward momentum transfer, forced channeling, and pressure-driven channeling all play a role in the development of southerly high wind events. These events are typically accompanied by strong south-southwesterly synoptic winds ahead of an upper-level trough off the California coast. The northerly high wind events, which typically occur when winds aloft are from the northwest ahead of an approaching upper-level ridge, are predominantly caused by the passage of a cold front when fast-moving cold air behind the surface front undercuts and displaces the warmer air in the valley. Forced channeling by the sidewalls of the relatively narrow valley aligns the wind direction with the valley axis and enhances the wind speeds.

Full access
Gengxin Chen
,
Weiqing Han
,
Yuanlong Li
,
Jinglong Yao
, and
Dongxiao Wang

Abstract

By analyzing in situ observations and conducting a series of ocean general circulation model experiments, this study investigates the physical processes controlling intraseasonal variability (ISV) of the Equatorial Undercurrent (EUC) of the Indian Ocean. ISV of the EUC leads to time-varying water exchanges between the western and eastern equatorial Indian Ocean. For the 2001–14 period, standard deviations of the EUC transport variability are 1.92 and 1.77 Sv (1 Sv ≡ 106 m3 s−1) in the eastern and western basins, respectively. The ISV of the EUC is predominantly caused by the wind forcing effect of atmospheric intraseasonal oscillations (ISOs) but through dramatically different ocean dynamical processes in the eastern and western basins. The stronger ISV in the eastern basin is dominated by the reflected Rossby waves associated with intraseasonal equatorial zonal wind forcing. It takes 20–30 days to set up an intraseasonal EUC anomaly through the Kelvin and Rossby waves associated with the first and second baroclinic modes. In the western basin, the peak intraseasonal EUC anomaly is generated by the zonal pressure gradient force, which is set up by radiating equatorial Kelvin and Rossby waves induced by the equatorial wind stress. Directly forced and reflected Rossby waves from the eastern basin propagate westward, contributing to intraseasonal zonal current near the surface but having weak impact on the peak ISV of the EUC.

Full access
Zhanyu Yao
,
Wanbiao Li
,
Yuanjing Zhu
,
Bolin Zhao
, and
Yong Chen

Abstract

The Tibetan Plateau is a unique location for studying the global climate and China's severe weather. The precipitation on the Tibetan Plateau can be studied conveniently with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). It is shown that the TMI brightness temperature at 85 GHz in the vertical polarization (TB85V) is negatively correlated to the surface rain rate, but a very low value of TB85V does not correspond to very intense surface rain rates on the Tibetan Plateau, a result that is different from what is observed in other areas of the world. For surface precipitation retrieval on the Tibetan Plateau from TMI, the effect from snow cover on precipitation retrieval is removed before analysis of precipitation. Using the dynamic cluster K-mean method, five categories of surface types and rain areas are identified on the Tibetan Plateau: dry soil, wet soil, water area, stratiform rain area, and convective rain area. The precipitation areas are screened by classification before the precipitation retrieval. Two datasets of rain-free areas and precipitation areas are formed after surface classification. Based on the dataset of rain-free areas, the value of TB85V can be simulated well by TB10V, TB19V, and TB21V when it is not raining. By means of the dataset of precipitation areas, it is revealed that the scattering index over land (SI L ) is positively correlated and the polarization-corrected brightness temperature at 85 GHz (PCT85) is negatively correlated with the surface rain rate. With SI L , PCT85, and their combinations as retrieval algorithms, three precipitation retrieval formulas are proposed in which the SI L algorithm is most suitable for small rain retrieval, the PCT85 algorithm is most suitable for moderate rain retrieval, and the combined SI L and PCT85 algorithm is most suitable for relatively large rain retrieval on the Tibetan Plateau. By means of two thresholds, 265 and 245 K, for TB85V, the combination of the three formulas is applied to precipitation retrieval on the Tibetan Plateau during the Tibetan Plateau Experiment Intensive Observing Period of 1998, resulting in acceptable and encouraging surface rain-rate retrievals. Intercomparison among the TMI algorithms and the 17 Special Sensor Microwave Imager algorithms from the second Precipitation Intercomparison Project demonstrates that the comprehensive application of the TMI algorithms has good precision and error index and is suitable for precipitation retrieval on the Tibetan Plateau.

Full access
Moran Zhuang
,
Anmin Duan
,
Riyu Lu
,
Puxi Li
, and
Jinglong Yao

Abstract

The Indochina Peninsula (ICP) has a critical effect in shaping the Asian summer monsoon (ASM). However, the seasonal responses of the ASM to the ICP are not fully understood. This study employs a 1° atmospheric general circulation model to examine the different contributions of the ICP’s orography and land–sea contrast to the ASM during the early and late summer. Results indicate that the orographic effect increases South Asian rainfall and reduces the rainfall over the South China Sea (SCS) and North China in early summer, but its influence on monsoonal circulation and rainfall is limited to East Asia in late summer. The impact of the ICP’s land–sea contrast is basically opposite in the two summer stages. With the presence of the ICP, SCS rainfall is enhanced but South Asian rainfall is weakened in early summer. In late summer, however, rainfall from the ICP to the northwestern Pacific is strikingly reduced, accompanied by intensified rainfall over South Asia. Relatively, the orographic effect seems to be more important in modulating the South Asian monsoon in early summer, while the land–sea contrast is dominant in strengthening the SCS monsoon and suppressing the northwest Pacific monsoon via the interaction between the induced local circulation and multilevel ASM subsystems. In late summer, the orographic effect on the ASM is much weaker compared to the land–sea contrast, which plays a critical role by shifting the subtropical high southwestward and through the “thermal adaption” feedback mechanism. Therefore, the orographic impact of the ICP on the ASM differs from that of the land–sea contrast in the two summer stages.

Open access
Sheng Huang
,
Weijiang Li
,
Jiahong Wen
,
Mengru Zhu
,
Yao Lu
, and
Na Wu

Abstract

Driven by both climate change and urbanization, extreme rainfall events are becoming more frequent and having an increasing impact on urban commuting. Using hourly rainfall data and “metro” origin–destination (OD) flow data in Shanghai, China, this study uses the Prophet time series model to calculate the predicted commuting flows during rainfall events and then quantifies the spatiotemporal variations of commuting flows due to rainfall at station and OD levels. Our results show the following: 1) In general, inbound commuting flows at metro stations tend to decrease with hourly rainfall intensity, varying across station types. The departure time of commuters is usually delayed by rainfall, resulting in a significant stacking effect of inbound flows at metro stations, with a pattern of falling followed by rising. The sensitivity of inbound flows to rainfall varies at different times, high at 0700 and 1700 LT and low at 0800, 0900, 1800, and 1900 LT because of the different levels of flexibility of departure time. 2) Short commuting OD flows (≤15 min) are more affected by rainfall, with an average increase of 7.3% and a maximum increase of nearly 35%, whereas long OD flows (>15 min) decrease slightly. OD flows between residential and industrial areas are more affected by rainfall than those between residential and commercial (service) areas, exhibiting a greater fluctuation of falling followed by rising. The sensitivity of OD flows to rainfall varies across metro lines. The departure stations of rainfall-sensitive lines are mostly distributed in large residential areas that rely heavily on the metro in the morning peak hours and in large industrial parks and commercial centers in the evening peak hours. Our findings reveal the spatiotemporal patterns of commuting flows resulting from rainfall at a finer scale, which provides a sound basis for spatial and temporal response strategies. This study also suggests that attention should be paid to the surges and stacking effects of commuting flows at certain times and areas during rainfall events.

Free access
Shuwen Tan
,
Larry J. Pratt
,
Dongliang Yuan
,
Xiang Li
,
Zheng Wang
,
Yao Li
,
Corry Corvianawatie
,
Dewi Surinati
,
Asep S. Budiman
, and
Ahmad Bayhaqi

Abstract

Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.

Free access