Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Zhanqing Li x
  • Aerosol-Cloud-Precipitation-Climate Interaction x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Jianjun Liu
,
Zhanqing Li
, and
Maureen Cribb

Abstract

This study investigates the response of marine boundary layer (MBL) cloud properties to aerosol loading by accounting for the contributions of large-scale dynamic and thermodynamic conditions and quantifies the first indirect effect (FIE). It makes use of 19-month measurements of aerosols, clouds, and meteorology acquired during the Atmospheric Radiation Measurement Mobile Facility field campaign over the Azores. Cloud droplet number concentrations and cloud optical depth (COD) significantly increased with increasing aerosol number concentration . Cloud droplet effective radius (DER) significantly decreased with increasing . The correlations between cloud microphysical properties [ , liquid water path (LWP), and DER] and were stronger under more stable conditions. The correlations between , LWP, DER, and were stronger under ascending-motion conditions, while the correlation between COD and was stronger under descending-motion conditions. The magnitude and corresponding uncertainty of the FIE ranged from 0.060 ± 0.022 to 0.101 ± 0.006 depending on the different LWP values. Under more stable conditions, cloud-base heights were generally lower than those under less stable conditions. This enabled a more effective interaction with aerosols, resulting in a larger value for the FIE. However, the dependence of the response of cloud properties to aerosol perturbations on stability varied according to whether ground- or satellite-based DER retrievals were used. The magnitude of the FIE had a larger variation with changing LWP under ascending-motion conditions and tended to be higher under ascending-motion conditions for clouds with low LWP and under descending-motion conditions for clouds with high LWP. A contrasting dependence of FIE on atmospheric stability estimated from the surface and satellite cloud properties retrievals reported in this study underscores the importance of assessing all-level properties of clouds in aerosol–cloud interaction studies.

Full access
Andrew R. Jongeward
,
Zhanqing Li
,
Hao He
, and
Xiaoxiong Xiong

Abstract

Aerosols contribute to Earth’s radiative budget both directly and indirectly, and large uncertainties remain in quantifying aerosol effects on climate. Variability in aerosol distribution and properties, as might result from changing emissions and transport processes, must be characterized. In this study, variations in aerosol loading across the eastern seaboard of the United States and the North Atlantic Ocean during 2002 to 2012 are analyzed to examine the impacts of anthropogenic emission control measures using monthly mean data from MODIS, AERONET, and IMPROVE observations and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulation. MODIS observes a statistically significant negative trend in aerosol optical depth (AOD) over the midlatitudes (−0.030 decade−1). Correlation analyses with surface AOD from AERONET sites in the upwind region combined with trend analysis from GOCART component AOD confirm that the observed decrease in the midlatitudes is chiefly associated with anthropogenic aerosols that exhibit significant negative trends from the eastern U.S. coast extending over the western North Atlantic. Additional analysis of IMPROVE surface PM2.5 observations demonstrates statistically significant negative trends in the anthropogenic components with decreasing mass concentrations over the eastern United States. Finally, a seasonal analysis of observational datasets is performed. The negative trend seen by MODIS is strongest during spring (MAM) and summer (JJA) months. This is supported by AERONET seasonal trends and is identified from IMPROVE seasonal trends as resulting from ammonium sulfate decreases during these seasons.

Full access
Jie Peng
,
Zhanqing Li
,
Hua Zhang
,
Jianjun Liu
, and
Maureen Cribb

Abstract

It has been widely recognized that aerosols can modify cloud properties, but it remains uncertain how much the changes and associated variations in cloud radiative forcing are related to aerosol loading. Using 4 yr of A-Train satellite products generated from CloudSat, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite, and the Aqua satellite, the authors investigated the systematic changes of deep cloud properties and cloud radiative forcing (CRF) with respect to changes in aerosol loading over the entire tropics. Distinct correlations between CRF and aerosol loading were found. Systematic variations in both shortwave and longwave CRF with increasing aerosol index over oceans and aerosol optical depth over land for mixed-phase clouds were identified, but little change was seen in liquid clouds. The systematic changes are consistent with the microphysical effect and the aerosol invigoration effect. Although this study cannot fully exclude the influence of other factors, attempts were made to explore various possibilities to the extent that observation data available can offer. Assuming that the systematic dependence originates from aerosol effects, changes in CRF with respect to aerosol loading were examined using satellite retrievals. Mean changes in shortwave and longwave CRF from very clean to polluted conditions ranged from −192.84 to −296.63 W m−2 and from 18.95 to 46.12 W m−2 over land, respectively, and from −156.12 to −170.30 W m−2 and from 6.76 to 11.67 W m−2 over oceans, respectively.

Full access
Yan Yang
,
Jiwen Fan
,
L. Ruby Leung
,
Chun Zhao
,
Zhanqing Li
, and
Daniel Rosenfeld

Abstract

A significant reduction in precipitation in the past decades has been documented over many mountain ranges such as those in central and eastern China. Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to the aerosol microphysical effect on suppressing warm rain. Rigorous quantitative investigations on the reasons responsible for the precipitation reduction are lacking. In this study, an improved Weather Research and Forecasting (WRF) Model with online coupled chemistry (WRF-Chem) is applied and simulations are conducted at the convection-permitting scale to explore the major mechanisms governing changes in precipitation from orographic clouds in the Mt. Hua area in central China. It is found that anthropogenic pollution contributes to a ~40% reduction of precipitation over Mt. Hua during the 1-month summertime period. The reduction is mainly associated with precipitation events associated with valley–mountain circulation and a mesoscale cold-front event. In this paper (Part I), the mechanism leading to a significant reduction for the cases associated with valley–mountain circulation is scrutinized. It is found that the valley breeze is weakened by aerosols as a result of absorbing aerosol-induced warming aloft and cooling near the surface as a result of aerosol–radiation interaction (ARI). The weakened valley breeze and the reduced water vapor in the valley due to reduced evapotranspiration as a result of surface cooling significantly reduce the transport of water vapor from the valley to mountain and the relative humidity over the mountain, thus suppressing convection and precipitation in the mountain.

Full access
Tianmeng Chen
,
Jianping Guo
,
Zhanqing Li
,
Chuanfeng Zhao
,
Huan Liu
,
Maureen Cribb
,
Fu Wang
, and
Jing He

Abstract

Many efforts have been taken to investigate aerosol–cloud interactions from space, but only a few studies have examined the response of vertical cloud structure to aerosol perturbations. Three-dimensional cloud climatologies of eight different cloud types identified from the CloudSat level-2 cloud product during the warm season (May–September) in 2008–10 over eastern China were first generated and analyzed. Using visibility as a proxy for cloud condensation nuclei, in combination with satellite-observed radar reflectivity, normalized contoured frequency by altitude diagrams of the differences in cloud radar reflectivity Z profiles under polluted and clean conditions were constructed. For shallow cumulus clouds (shallow Cu) Z tends to be inhibited, and it is enhanced in the upper layers for deep cumulus (deep Cu), nimbostratus (Ns), and deep convective clouds (DCC) under polluted conditions. Overall, analyses of the modified center of gravity (MCOG) and cloud-top height (CTH) also point to a similar aerosol effect, except for the nonsignificant changes in MCOGs and CTHs in deep Cu. The impacts of environmental factors such as lower-tropospheric stability and vertical velocity are also discussed for these types of clouds. Although consistent aerosol-induced elevations in MCOGs and CTHs for Ns and DCC clouds are observed, the effect of meteorology cannot be completely ruled out, which merits further analysis.

Full access