Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Catherine M. Naud x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Catherine M. Naud
and
Brian H. Kahn

Abstract

Ice cloud properties in Northern Hemisphere winter extratropical cyclones are examined using the Atmospheric Infrared Sounder (AIRS), version 6, cloud products. The cloud thermodynamic phase product indicates that warm frontal clouds are dominated by ice, liquid-phase clouds occur outside of the warm frontal region, and supercooled or mixed-phase clouds are found in the southwestern quadrant of the cyclones. Stratiform ice clouds populate the warm frontal region and portions of the cold sector while convective ice clouds populate southeastern portions of the warm front and the southeastern quadrant. Total cloud cover is smaller in land cyclones than in ocean cyclones, especially in the southwestern quadrant and the warm frontal region. Ice cloud cover is less over land in the warm frontal region, because land cyclones are generally weaker and drier than ocean cyclones. The impact of cyclone average precipitable water (PW) and the magnitude of 850-hPa vertical ascent ω 850 on the thermodynamic phase, occurrence of stratiform or convective ice cloud, ice particle effective diameter, optical thickness, and cloud-top temperature are discussed. When comparing land and ocean cyclones with similar PW and ω 850, ice cloud coverage is found to be greater over land. Convective ice cloud occurs more often and is deeper over land. Supercooled cloud appears to persist to colder temperatures over ocean than over land, especially in the warm frontal region. These results suggest that, over land, ice cloud formation in warm fronts is possibly more efficient because of a greater aerosol amount from local or regional sources.

Full access
Juan A. Crespo
,
Catherine M. Naud
, and
Derek J. Posselt

Abstract

Latent and sensible heat fluxes over the oceans are believed to play an important role in the genesis and evolution of marine-based extratropical cyclones (ETCs) and affect rapid cyclogenesis. Observations of ocean surface heat fluxes are limited from existing in situ and remote sensing platforms, which may not offer sufficient spatial and temporal resolution. In addition, substantial precipitation frequently veils the ocean surface around ETCs, limiting the capacity of spaceborne instruments to observe the surface processes within maturing ETCs. Although designed as a tropics-focused mission, the Cyclone Global Navigation Satellite System (CYGNSS) can observe ocean surface wind speed and heat fluxes within a notable quantity of low-latitude extratropical fronts and cyclones. These observations can assist in understanding how surface processes may play a role in cyclogenesis and evolution. This paper illustrates CYGNSS’s capability to observe extratropical cyclones manifesting in various ocean basins throughout the globe and shows that the observations provide a robust sample of ETCs winds and surface fluxes, as compared with a reanalysis dataset.

Full access
Catherine M. Naud
,
Juan A. Crespo
, and
Derek J. Posselt

Abstract

Surface latent and sensible heat fluxes are important for extratropical cyclone evolution and intensification. Because extratropical cyclone genesis often occurs at low latitudes, Cyclone Global Navigation Satellite System (CYGNSS) surface latent and sensible heat flux retrievals are composited to provide a mean picture of their spatial distribution in low-latitude oceanic extratropical cyclones. CYGNSS heat fluxes are not affected by heavy precipitation and offer observations of storms with frequent revisit times. Consistent with prior results obtained for cyclones in the Gulf Stream region, the fluxes are strongest in the wake of the cold fronts and are weakest to negative in the warm sector in advance of the cold fronts. As cyclone strength increases or mean precipitable water decreases, the maximum in surface heat fluxes increases while the minimum decreases. This affects the changes in fluxes during cyclone intensification: the post-cold-frontal surface heat flux maximum increases as a result of the increase in near-surface winds. During cyclone dissipation, the fluxes in this sector decrease because of the decrease in winds and in temperature and humidity contrast. The warm-sector minimum decreases throughout the entire cyclone lifetime and is mostly driven by sea–air temperature and humidity contrast changes. However, during cyclone dissipation, the surface heat fluxes increase along the cold front in a narrow band to the east, independent from changes in the cyclone characteristics. This result suggests that, during cyclone dissipation, energy transfers from the ocean to the atmosphere are linked to frontal processes in addition to synoptic-scale processes.

Full access
Catherine M. Naud
,
James F. Booth
,
Matthew Lebsock
, and
Mircea Grecu

Abstract

Using cyclone-centered compositing and a database of extratropical-cyclone locations, the distribution of precipitation frequency and rate in oceanic extratropical cyclones is analyzed using satellite-derived datasets. The distribution of precipitation rates retrieved using two new datasets, the Global Precipitation Measurement radar–microwave radiometer combined product (GPM-CMB) and the Integrated Multisatellite Retrievals for GPM product (IMERG), is compared with CloudSat, and the differences are discussed. For reference, the composites of AMSR-E, GPCP, and two reanalyses are also examined. Cyclone-centered precipitation rates are found to be the largest with the IMERG and CloudSat datasets and lowest with GPM-CMB. A series of tests is conducted to determine the roles of swath width, swath location, sampling frequency, season, and epoch. In all cases, these effects are less than ~0.14 mm h−1 at 50-km resolution. Larger differences in the composites are related to retrieval biases, such as ground-clutter contamination in GPM-CMB and radar saturation in CloudSat. Overall the IMERG product reports precipitation more often, with larger precipitation rates at the center of the cyclones, in conditions of high precipitable water (PW). The CloudSat product tends to report more precipitation in conditions of dry or moderate PW. The GPM-CMB product tends to systematically report lower precipitation rates than the other two datasets. This intercomparison provides 1) modelers with an observational uncertainty and range (0.21–0.36 mm h−1 near the cyclone centers) when using composites of precipitation for model evaluation and 2) retrieval-algorithm developers with a categorical analysis of the sensitivity of the products to PW.

Full access
Juan A. Crespo
,
Derek J. Posselt
,
Catherine M. Naud
, and
Charles Bussy-Virat

Abstract

The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is designed to estimate surface wind speeds over the global tropical oceans. Nevertheless, its orbit allows the constellation to view regions up to 40° latitude. As such, it is possible that CYGNSS will provide observations of a number of low-latitude extratropical cyclones and their associated fronts. In this study, one year of simulated CYGNSS specular point locations is combined with a database of objectively identified fronts and cyclones to assess the potential efficacy of CYGNSS for observing extratropical systems. It is found that, with the exception of regions poleward of warm fronts, the subset of locations in the simulated CYGNSS dataset nearly exactly matches the distribution of wind speeds and surface fluxes across frontal zones and near cyclone centers in the reanalysis database.

Full access