Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Charles W. Stockton x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
David M. Meko
and
Charles W. Stockton

Abstract

Long-term streamflow series in the western United States were examined for evidence of secular changes related to climate. Streamflow series contained appreciable low-frequency variation related to the combined influence of temperature and precipitation. Evidence of nonstationarity was found in selected records for the Pacific Northwest and the Upper Colorado Basins: mean annual streamflow increased significantly (0.05 level) from the first to last half of the 1914–80 period in the Pacific Northwest, and decreased significantly over the same period in the Upper Colorado region. Correlation analyses and examination of drought years revealed a strong tendency for anomalies of opposite sign in the Pacific Northwest and the Southwest. Drought in the Upper Colorado Basin was statistically independent of drought in the Pacific Northwest. Under exceptional meteorological conditions (e.g., water-year 1976–77), however, low flows occurred over a vast area from the Northwest coast to the mountains of central Arizona.

Full access
Charles W. Stockton
and
David M. Meko

Abstract

Recently collected tree-ring data were used to reconstruct drought from 1700 to the present in four regionsflanking the Great Plains. Regions were centered in Iowa, Oklahoma, eastern Montana and eastern Wyoming.Reconstructions derived by multiple linear regression explained from 44 to 56% of the variance in regionallyaveraged annual precipitation from 1933 to 1977. Years of widespread severe drought clustered into droughtepochs lasting 5-10 years. A weighted mean of the four regional reconstructions pointed out the severity ofthe 1930's drought; the years 1934, 1936 and 1939 ranked among the driest 10 of 278 years. When droughtconditions were averaged over periods of three or more years, the 1930's drought was equaled or surpassedin severity by droughts in the 1750's, 1820's and 1860's. Spectral analysis of the 1700-1977 reconstructionindicated that precipitation averaged over the four regions had a penodicity of 16-19 years, but reconstructions for the individual regions deviated considerably from this result. The Iowa region was dominated bya 22-year periodicity, the Oklahoma region by a 17-23 year periodicity, and the other two regions by arelatively strong 60-year penodicity. Separate analysis of 88-year subperiods of reconstructions indicated thatevidence for a 22-year periodicity was strongest in the most recent period (1890-1977), weaker for 1802-89and lacking entirely from 1714 to 1801.

Full access
Edward R. Cook
,
David M. Meko
, and
Charles W. Stockton

Abstract

A new drought area index (DAI) for the United States has been developed based on a high-quality network of drought reconstructions from tree rings. This DAI is remarkably similar to one developed earlier based on much less data and shows strong evidence for a persistent bidecadal drought rhythm in the western United States since 1700. This rhythm has in the past been associated with possible forcing by the 22-yr Hale solar magnetic cycle and the 18.6-yr lunar nodal tidal cycle. The authors make a new assessment of these possible forcings on DAI using different methods of analysis. In so doing, they confirm most of the previous findings. In particular, there is a reasonably strong statistical association between the bidecadal drought area rhythm and years of Hale solar cycle minima and 18.6-yr lunar tidal maxima. The authors also show that the putative solar and lunar effects appear to be interacting to modulate the drought area rhythm, especially since 1800. These results do not eliminate the possibility that the drought area rhythm is, in fact, internally forced by coupled ocean–atmosphere processes. Recent modeling results suggest that unstable ocean–atmosphere interactions in the North Pacific could be responsible for the drought rhythm as well. However, the results presented here do not easily allow for the rejection of the solar and lunar forcing hypotheses either.

Full access
David Meko
,
Edward R. Cook
,
David W. Stahle
,
Charles W. Stockton
, and
Malcolm K. Hughes

Abstract

A network of 248 tree-ring chronologies in the conterminous United States is assembled and analyzed by rotated principal components analysis (RPCA) to delineate “regions” of common tree-growth variation during the period 1705–1979. Spatial continuity of the tree-ring data is summarized by variogram analysis, and tree-ring data are gridded before RPCA to reduce effects of site clustering. Principal component drought information is evaluated by comparing PC scores and primary pattern coefficients with Palmer Drought Severity Index (PDSI) data from instrumental records.

High PC pattern coefficients group geographically into regions coinciding roughly with nine drought regions delineated by RPCA of PDSI by other researchers. The drought signal as measured by the correlation between tree-ring PC scores and July PDSI, 1929–79, is strongest in the South and the interior West (r>0.7), and weakest in the Northeast and Pacific Northwest (r<0.16). A count of years with large negative PC scores in multiple regions marks the 1950s as the extreme in widespread drought across the southern United States to 1705.

Tree-growth regions are sensitive to whether tree-ring data are gridded before RPCA. Principal components on ungridded tree-ring data tend to center on dense clusters of sites. The importance of site density is most noticeable in the RPCA results for the southeast, where the gridded data yield a PC centered on a group of climate-sensitive but widely spaced bald cypress chronologies. Cross-validation indicates that gridding of tree-ring anomalies over different species for drought reconstruction is more appropriate in the semiarid southwest than in cooler, moister regions—especially the northeast and the Pacific Northwest. Our results endorse the large-scale chronology network as a long-term proxy for the spatial and temporal patterns of past drought across the United States.

Full access