Search Results
Abstract
This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy.
Abstract
This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy.
Abstract
This investigation explores the relationship among bores, gravity waves, and convection within the nocturnal environment through the utilization of measurements taken during the International H2O Project (IHOP_2002) over the Southern Great Plains. The most favorable conditions for deep convection were found to occur within the boundary layer during the late afternoon and early evening hours in association with the diurnal cycle of solar insolation. At night, the layers most favorable for deep convection occur at and above the height of the nocturnal southerly low-level jet in association with distinct maxima in both the southerly and westerly components of the wind. Observations taken during the passage of 13 nocturnal wave disturbances over a comprehensive profiling site show the average maximum and net upward displacements with these waves were estimated to be ~900 and ~660 m, respectively. The lifting was not limited to the stable boundary layer, but reached into the conditionally unstable layers aloft. Since the net upward displacements persisted for many hours as the disturbances propagated away from the convection, areas well in excess of 10 000 km2 are likely impacted by this ascent. This lifting can directly maintain existing convection and aid in the initiation of new convection by reducing the convective inhibition in the vicinity of the active convection. In agreement with past studies, strong ascent in the lowest ~1.5 km was generally consistent with the passage of a bore. However, separate wave responses also occurred well above the bores, and low-frequency gravity waves may explain such disturbances.
Abstract
This investigation explores the relationship among bores, gravity waves, and convection within the nocturnal environment through the utilization of measurements taken during the International H2O Project (IHOP_2002) over the Southern Great Plains. The most favorable conditions for deep convection were found to occur within the boundary layer during the late afternoon and early evening hours in association with the diurnal cycle of solar insolation. At night, the layers most favorable for deep convection occur at and above the height of the nocturnal southerly low-level jet in association with distinct maxima in both the southerly and westerly components of the wind. Observations taken during the passage of 13 nocturnal wave disturbances over a comprehensive profiling site show the average maximum and net upward displacements with these waves were estimated to be ~900 and ~660 m, respectively. The lifting was not limited to the stable boundary layer, but reached into the conditionally unstable layers aloft. Since the net upward displacements persisted for many hours as the disturbances propagated away from the convection, areas well in excess of 10 000 km2 are likely impacted by this ascent. This lifting can directly maintain existing convection and aid in the initiation of new convection by reducing the convective inhibition in the vicinity of the active convection. In agreement with past studies, strong ascent in the lowest ~1.5 km was generally consistent with the passage of a bore. However, separate wave responses also occurred well above the bores, and low-frequency gravity waves may explain such disturbances.