Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Erik Sahlee x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Erik Sahlée
,
Ann-Sofi Smedman
,
Anna Rutgersson
, and
Ulf Högström

Abstract

Recent research has found that boundary layer turbulence changes its organization as the stratification approaches neutral from the unstable side. When the thermal forcing weakens in combination with wind speed above approximately 10 m s−1, detached eddies are formed in the upper part of the surface layer. These eddies effectively transport drier and colder air from aloft to the surface as they move downward, thereby enhancing the surface fluxes of sensible and latent heat. This effect has been observed over both land and sea; that is, it is not dependent on the nature of the underlying surface. Here the authors perform a sensitivity study of how this reorganization of the turbulence structure influences the global air–sea heat fluxes. Using modified bulk formulations incorporating this effect, the magnitude of the enhancement in a climatic sense was estimated by the use of 40-yr ECMWF Re-Analysis (ERA-40) data in the bulk formulas. It is found that for the 1979–2001 period, the global increase of the latent and sensible heat fluxes over the ice-free oceans is 3.6 and 1.2 W m−2, respectively. These numbers suggest that this effect is of some significance. The results also indicate that the regional and seasonal variability may be large. The largest annual increases are found over the southern oceans between 30° and 60°S where the sensible heat flux increases by 2.3 W m−2 and the latent heat flux by 6.5 W m−2. Ocean areas close to the equator experience almost no increase, whereas the latent heat flux from the Arabian Sea during the monsoon period is enhanced by 11.5 W m−2.

Full access