Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Farhat Abbas x
- Refine by Access: Content accessible to me x
Abstract
Prolonged droughts and uneven monsoons have adversely affected socioeconomic and environmental conditions of Pakistan, especially of the Punjab province. Analysis of historical (1981–2010) daily minimum and maximum temperatures from five cities in semiarid Punjab, Pakistan, was carried out to evaluate spatial and temporal patterns in thermal regimes. A total of 13 climate change indices were calculated using daily minimum and maximum temperatures and analyzed for trend using RClimDex, a program written in the statistical software package R. A nonparametric Mann–Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of a trend, respectively. Observed trends in selected indices during 1981–2010 suggest an overall warming in the region. Over the analysis period, the regionally averaged occurrence of extreme cold (10th percentile) nights and days has decreased by −3.94 nights per decade and −0.61 days per decade, respectively. Occurrence of extreme hot (90th percentile) nights and days has increased by 4.19 nights per decade and 0.92 days per decade, respectively. The number of summer days has increased by almost 3 days per decade on average at four out of the five cities. Multan was the only city where the number of summer days has declined by 5 days per decade. Regionally averaged increase in tropical nights was 8.35 nights per decade. Regional warming will dictate increased crop water requirements in this semiarid region agriculture, which is already under water-scarce conditions, especially in the Faisalabad district, where saline groundwater is not suitable for crops.
Abstract
Prolonged droughts and uneven monsoons have adversely affected socioeconomic and environmental conditions of Pakistan, especially of the Punjab province. Analysis of historical (1981–2010) daily minimum and maximum temperatures from five cities in semiarid Punjab, Pakistan, was carried out to evaluate spatial and temporal patterns in thermal regimes. A total of 13 climate change indices were calculated using daily minimum and maximum temperatures and analyzed for trend using RClimDex, a program written in the statistical software package R. A nonparametric Mann–Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of a trend, respectively. Observed trends in selected indices during 1981–2010 suggest an overall warming in the region. Over the analysis period, the regionally averaged occurrence of extreme cold (10th percentile) nights and days has decreased by −3.94 nights per decade and −0.61 days per decade, respectively. Occurrence of extreme hot (90th percentile) nights and days has increased by 4.19 nights per decade and 0.92 days per decade, respectively. The number of summer days has increased by almost 3 days per decade on average at four out of the five cities. Multan was the only city where the number of summer days has declined by 5 days per decade. Regionally averaged increase in tropical nights was 8.35 nights per decade. Regional warming will dictate increased crop water requirements in this semiarid region agriculture, which is already under water-scarce conditions, especially in the Faisalabad district, where saline groundwater is not suitable for crops.
Abstract
During downward vertical flow of a viscous solution, the viscous fingering (VF) phenomenon affects miscible displacement of solutes through a soil profile. On the other hand, during horizontal flow, when the liquid residing in a horizontal bed of porous materials is displaced by another liquid of different density, the resulting hydrodynamic dispersion is modified by the formation of a tongue of denser liquid undershooting the less dense liquid, a phenomenon known as gravity segregation (GS). To explore VF and GS phenomena, the authors present laboratory experimental results on the vertical and horizontal transport of bulk solution and ions of different concentrations and/or densities through inert and reactive porous media. The study showed that, with miscible liquids, breakthrough starts later and ends earlier. The authors predicted the behavior of immiscible liquids by the nondimensional gravity segregation number β: that is, with increase in β, the segregation becomes extreme. The curve fitting technique CXTFIT 2.0 fitted the experimental breakthrough curves well, showing that the apparent coefficients of hydrodynamic dispersion vary much less with pore-water velocity in horizontal than in vertical flow, but retardation factors are not influenced by the orientation of flow. This work is relevant to the preferential flow of viscous liquids such as liquid fertilizers in agricultural fields, oil recovery processes, and the intrusion of saline water into the freshwater of coastal aquifers.
Abstract
During downward vertical flow of a viscous solution, the viscous fingering (VF) phenomenon affects miscible displacement of solutes through a soil profile. On the other hand, during horizontal flow, when the liquid residing in a horizontal bed of porous materials is displaced by another liquid of different density, the resulting hydrodynamic dispersion is modified by the formation of a tongue of denser liquid undershooting the less dense liquid, a phenomenon known as gravity segregation (GS). To explore VF and GS phenomena, the authors present laboratory experimental results on the vertical and horizontal transport of bulk solution and ions of different concentrations and/or densities through inert and reactive porous media. The study showed that, with miscible liquids, breakthrough starts later and ends earlier. The authors predicted the behavior of immiscible liquids by the nondimensional gravity segregation number β: that is, with increase in β, the segregation becomes extreme. The curve fitting technique CXTFIT 2.0 fitted the experimental breakthrough curves well, showing that the apparent coefficients of hydrodynamic dispersion vary much less with pore-water velocity in horizontal than in vertical flow, but retardation factors are not influenced by the orientation of flow. This work is relevant to the preferential flow of viscous liquids such as liquid fertilizers in agricultural fields, oil recovery processes, and the intrusion of saline water into the freshwater of coastal aquifers.
Abstract
Climatic extremes have direct and indirect effects on an ecosystem, whereby thermal variations bring warm and cold weather, and hydrological anomalies cause droughts and floods. Changing patterns of 13 temperature and 11 precipitation extreme indices for a 36-yr period (1980–2015) for four cities of the Balochistan province of Pakistan (Pasni, Jiwani, Khuzdar, and Dalbadin) were computed using RClimdex. A nonparametric Mann–Kendall test and Sen’s slope estimates were used to determine the statistical significance and magnitude of a trend, respectively. Most of the indices calculated for temperature extremes show statistically significant changes in their historic pattern, depicting a clear picture of warming in the regions. The indices calculated for precipitation extremes show statistically significant as well as nonsignificant results, depicting asymmetrical droughts in the region. If the patterns of humid weather with hot and wet extremes in the coastal cities of Balochistan continue for a couple of future decades, there will be challenges in implementing the multibillion-dollar Balochistan coastal development projects of the Pakistani port of Gwadar—a doorway to the Middle East for Chinese-planned business endeavors through Pakistan.
Abstract
Climatic extremes have direct and indirect effects on an ecosystem, whereby thermal variations bring warm and cold weather, and hydrological anomalies cause droughts and floods. Changing patterns of 13 temperature and 11 precipitation extreme indices for a 36-yr period (1980–2015) for four cities of the Balochistan province of Pakistan (Pasni, Jiwani, Khuzdar, and Dalbadin) were computed using RClimdex. A nonparametric Mann–Kendall test and Sen’s slope estimates were used to determine the statistical significance and magnitude of a trend, respectively. Most of the indices calculated for temperature extremes show statistically significant changes in their historic pattern, depicting a clear picture of warming in the regions. The indices calculated for precipitation extremes show statistically significant as well as nonsignificant results, depicting asymmetrical droughts in the region. If the patterns of humid weather with hot and wet extremes in the coastal cities of Balochistan continue for a couple of future decades, there will be challenges in implementing the multibillion-dollar Balochistan coastal development projects of the Pakistani port of Gwadar—a doorway to the Middle East for Chinese-planned business endeavors through Pakistan.
Abstract
Extreme precipitation occurring on consecutive days may substantially increase the risk of related impacts, but changes in such events have not been studied at a global scale. Here we use a unique global dataset based on in situ observations and multimodel historical and future simulations to analyze the changes in the frequency of extreme precipitation on consecutive days (EPCD). We further disentangle the relative contributions of variations in precipitation intensity and temporal correlation of extreme precipitation to understand the processes that drive the changes in EPCD. Observations and climate model simulations show that the frequency of EPCD is increasing in most land regions, in particular, in North America, Europe, and the Northern Hemisphere high latitudes. These increases are primarily a consequence of increasing precipitation intensity, but changes in the temporal correlation of extreme precipitation regionally amplify or reduce the effects of intensity changes. Changes are larger in simulations with a stronger warming signal, suggesting that further increases in EPCD are expected for the future under continued climate warming.
Abstract
Extreme precipitation occurring on consecutive days may substantially increase the risk of related impacts, but changes in such events have not been studied at a global scale. Here we use a unique global dataset based on in situ observations and multimodel historical and future simulations to analyze the changes in the frequency of extreme precipitation on consecutive days (EPCD). We further disentangle the relative contributions of variations in precipitation intensity and temporal correlation of extreme precipitation to understand the processes that drive the changes in EPCD. Observations and climate model simulations show that the frequency of EPCD is increasing in most land regions, in particular, in North America, Europe, and the Northern Hemisphere high latitudes. These increases are primarily a consequence of increasing precipitation intensity, but changes in the temporal correlation of extreme precipitation regionally amplify or reduce the effects of intensity changes. Changes are larger in simulations with a stronger warming signal, suggesting that further increases in EPCD are expected for the future under continued climate warming.