Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Mauricio Zambrano-Bigiarini x
- Refine by Access: Content accessible to me x
Abstract
Six satellite-based rainfall estimates (SRFE)—namely, Climate Prediction Center (CPC) morphing technique (CMORPH), the Rainfall Estimation Algorithm, version 2 (RFE2.0), Tropical Rainfall Measuring Mission (TRMM) 3B42, Goddard profiling algorithm, version 6 (GPROF 6.0), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMap MVK), and one reanalysis product [the interim ECMWF Re-Analysis (ERA-Interim)]—were validated against 205 rain gauge stations over four African river basins (Zambezi, Volta, Juba–Shabelle, and Baro–Akobo). Validation focused on rainfall characteristics relevant to hydrological applications, such as annual catchment totals, spatial distribution patterns, seasonality, number of rainy days per year, and timing and volume of heavy rainfall events. Validation was done at three spatially aggregated levels: point-to-pixel, subcatchment, and river basin for the period 2003–06. Performance of satellite-based rainfall estimation (SRFE) was assessed using standard statistical methods and visual inspection. SRFE showed 1) accuracy in reproducing precipitation on a monthly basis during the dry season, 2) an ability to replicate bimodal precipitation patterns, 3) superior performance over the tropical wet and dry zone than over semiarid or mountainous regions, 4) increasing uncertainty in the estimation of higher-end percentiles of daily precipitation, 5) low accuracy in detecting heavy rainfall events over semiarid areas, 6) general underestimation of heavy rainfall events, and 7) overestimation of number of rainy days in the tropics. In respect to SRFE performance, GPROF 6.0 and GSMaP-MKV were the least accurate, and RFE 2.0 and TRMM 3B42 were the most accurate. These results allow discrimination between the available products and the reduction of potential errors caused by selecting a product that is not suitable for particular morphoclimatic conditions. For hydrometeorological applications, results support the use of a performance-based merged product that combines the strength of multiple SRFEs.
Abstract
Six satellite-based rainfall estimates (SRFE)—namely, Climate Prediction Center (CPC) morphing technique (CMORPH), the Rainfall Estimation Algorithm, version 2 (RFE2.0), Tropical Rainfall Measuring Mission (TRMM) 3B42, Goddard profiling algorithm, version 6 (GPROF 6.0), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMap MVK), and one reanalysis product [the interim ECMWF Re-Analysis (ERA-Interim)]—were validated against 205 rain gauge stations over four African river basins (Zambezi, Volta, Juba–Shabelle, and Baro–Akobo). Validation focused on rainfall characteristics relevant to hydrological applications, such as annual catchment totals, spatial distribution patterns, seasonality, number of rainy days per year, and timing and volume of heavy rainfall events. Validation was done at three spatially aggregated levels: point-to-pixel, subcatchment, and river basin for the period 2003–06. Performance of satellite-based rainfall estimation (SRFE) was assessed using standard statistical methods and visual inspection. SRFE showed 1) accuracy in reproducing precipitation on a monthly basis during the dry season, 2) an ability to replicate bimodal precipitation patterns, 3) superior performance over the tropical wet and dry zone than over semiarid or mountainous regions, 4) increasing uncertainty in the estimation of higher-end percentiles of daily precipitation, 5) low accuracy in detecting heavy rainfall events over semiarid areas, 6) general underestimation of heavy rainfall events, and 7) overestimation of number of rainy days in the tropics. In respect to SRFE performance, GPROF 6.0 and GSMaP-MKV were the least accurate, and RFE 2.0 and TRMM 3B42 were the most accurate. These results allow discrimination between the available products and the reduction of potential errors caused by selecting a product that is not suitable for particular morphoclimatic conditions. For hydrometeorological applications, results support the use of a performance-based merged product that combines the strength of multiple SRFEs.
Abstract
We introduce a set of global high-resolution (0.05°) precipitation (P) climatologies corrected for bias using streamflow (Q) observations from 9372 stations worldwide. For each station, we inferred the “true” long-term P using a Budyko curve, which is an empirical equation relating long-term P, Q, and potential evaporation. We subsequently calculated long-term bias correction factors for three state-of-the-art P climatologies [the “WorldClim version 2” database (WorldClim V2); Climatologies at High Resolution for the Earth’s Land Surface Areas, version 1.2 (CHELSA V1.2 ); and Climate Hazards Group Precipitation Climatology, version 1 (CHPclim V1)], after which we used random-forest regression to produce global gap-free bias correction maps for the P climatologies. Monthly climatological bias correction factors were calculated by disaggregating the long-term bias correction factors on the basis of gauge catch efficiencies. We found that all three climatologies systematically underestimate P over parts of all major mountain ranges globally, despite the explicit consideration of orography in the production of each climatology. In addition, all climatologies underestimate P at latitudes >60°N, likely because of gauge undercatch. Exceptionally high long-term correction factors (>1.5) were obtained for all three P climatologies in Alaska, High Mountain Asia, and Chile—regions characterized by marked elevation gradients, sparse gauge networks, and significant snowfall. Using the bias-corrected WorldClim V2, we demonstrated that other widely used P datasets (GPCC V2015, GPCP V2.3, and MERRA-2) severely underestimate P over Chile, the Himalayas, and along the Pacific coast of North America. Mean P for the global land surface based on the bias-corrected WorldClim V2 is 862 mm yr−1 (a 9.4% increase over the original WorldClim V2). The annual and monthly bias-corrected P climatologies have been released as the Precipitation Bias Correction (PBCOR) dataset, which is available online (http://www.gloh2o.org/pbcor/).
Abstract
We introduce a set of global high-resolution (0.05°) precipitation (P) climatologies corrected for bias using streamflow (Q) observations from 9372 stations worldwide. For each station, we inferred the “true” long-term P using a Budyko curve, which is an empirical equation relating long-term P, Q, and potential evaporation. We subsequently calculated long-term bias correction factors for three state-of-the-art P climatologies [the “WorldClim version 2” database (WorldClim V2); Climatologies at High Resolution for the Earth’s Land Surface Areas, version 1.2 (CHELSA V1.2 ); and Climate Hazards Group Precipitation Climatology, version 1 (CHPclim V1)], after which we used random-forest regression to produce global gap-free bias correction maps for the P climatologies. Monthly climatological bias correction factors were calculated by disaggregating the long-term bias correction factors on the basis of gauge catch efficiencies. We found that all three climatologies systematically underestimate P over parts of all major mountain ranges globally, despite the explicit consideration of orography in the production of each climatology. In addition, all climatologies underestimate P at latitudes >60°N, likely because of gauge undercatch. Exceptionally high long-term correction factors (>1.5) were obtained for all three P climatologies in Alaska, High Mountain Asia, and Chile—regions characterized by marked elevation gradients, sparse gauge networks, and significant snowfall. Using the bias-corrected WorldClim V2, we demonstrated that other widely used P datasets (GPCC V2015, GPCP V2.3, and MERRA-2) severely underestimate P over Chile, the Himalayas, and along the Pacific coast of North America. Mean P for the global land surface based on the bias-corrected WorldClim V2 is 862 mm yr−1 (a 9.4% increase over the original WorldClim V2). The annual and monthly bias-corrected P climatologies have been released as the Precipitation Bias Correction (PBCOR) dataset, which is available online (http://www.gloh2o.org/pbcor/).