Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Paul Robinson x
  • Monthly Weather Review x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Karen Kosiba
,
Joshua Wurman
,
Forrest J. Masters
, and
Paul Robinson

Abstract

Data collected from a Doppler on Wheels (DOW) mobile radar deployed in Port Arthur, Texas, near the point of landfall of Hurricane Rita (2005) and from two Florida Coastal Monitoring Program 10-m weather stations (FCMP-WSs) are used to characterize wind field variability, including hurricane boundary layer (HBL) streaks/rolls, during the hurricane's passage. DOW data, validated against nearby weather station data, are combined with surface roughness fields derived from land-use mapping to produce fine spatial scale, two-dimensional maps of the 10 m above ground level (AGL) open-terrain exposure and exposure-influenced winds over Port Arthur. The DOW collected ~3000 low-elevation radar sweeps at 12-s intervals for >10 h during the passage of the hurricane. This study focuses on the 2–3-h period when the western eyewall passed over Port Arthur. Finescale HBL wind streaks are observed to have length scales of O(300 m), smaller than previously identified in other HBL studies. The HBL streaks are tracked as they pass over an FCMP-WS located in flat, open terrain and another FCMP-WS located near a subdivision. DOW data collected over the FCMP-WS are reduced to anemometer height, using roughness lengths calculated from DOW and FCMP-WS data. Variations in the radar-observed winds directly over the FCMP-WS are very well correlated, both in their timing and magnitude, with wind gusts observed by the weather stations, revealing directly for the first time the surface manifestation of these wind streaks that are observed frequently by radar >100 m AGL. This allows for the generation of spatially filled maps of small-scale wind fluctuations over Port Arthur during the hurricane eyewall's passage using DOW-measured winds.

Full access
Joshua Wurman
,
Karen Kosiba
,
Paul Markowski
,
Yvette Richardson
,
David Dowell
, and
Paul Robinson

Abstract

Finescale single- and dual-Doppler observations are used to diagnose the three-dimensional structure of the wind field surrounding a tornado that occurred near the town of Orleans, Nebraska, on 22 May 2004. The evolution of the vorticity and divergence fields and other structures near the tornado are documented in the lowest kilometer. Changes in tornado intensity are compared to the position of the tornado relative to primary and secondary gust fronts. Circulation on scales of a few kilometers surrounding the tornado remains relatively constant during the analysis period, which spans the intensifying and mature periods of the tornado’s life cycle. Stretching of vertical vorticity and tilting of horizontal vorticity are diagnosed, but the latter is near or below the threshold of detectability in this analysis during the observation period in the analyzed domain. Low-level circulation within 500 m of the tornado increased several minutes before vortex-relative and ground-relative near-surface wind speeds in the tornado increased, raising the possibility that such trends in circulation may be useful in forecasting tornado intensification.

Full access
James Marquis
,
Yvette Richardson
,
Paul Markowski
,
Joshua Wurman
,
Karen Kosiba
, and
Paul Robinson

Abstract

Storm-scale and mesocyclone-scale processes occurring contemporaneously with a tornado in the Goshen County, Wyoming, supercell observed on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are examined using ensemble analyses produced by assimilating mobile radar and in situ observations into a high-resolution convection-resolving model. This paper focuses on understanding the evolution of the vertical structure of the storm, the outflow buoyancy, and processes affecting the vertical vorticity and circulation within the mesocyclone that correspond to changes in observed tornado intensity.

Tornadogenesis occurs when the low-level mesocyclone is least negatively buoyant relative to the environment, possesses its largest circulation, and is collocated with the largest azimuthally averaged convergence during the analysis period. The average buoyancy, circulation, and convergence within the near-surface mesocyclone (on spatial scales resolved by the model) all decrease as the tornado intensifies and matures. The tornado and its parent low-level mesocyclone both dissipate surrounded by a weakening rear-flank downdraft. The decreasing buoyancy of parcels within the low-level mesocyclone may partly be responsible for the weakening of the updraft surrounding the tornado and decoupling of the mid- and low-level circulation. Although the supply of horizontal vorticity generated in the forward flank of the storm increases throughout the life cycle of the tornado, it is presumably less easily tilted and stretched on the mesocyclone-scale during tornado maturity owing to the disruption of the low-level updraft/downdraft structure. Changes in radar-measured tornado intensity lag those of ensemble Kalman filter (EnKF) mesocyclone vorticity and circulation.

Full access
Karen Kosiba
,
Joshua Wurman
,
Yvette Richardson
,
Paul Markowski
,
Paul Robinson
, and
James Marquis

Abstract

The genesis of a strong and long-lived tornado observed during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) in Goshen County, Wyoming, on 5 June 2009 is studied. Mobile radar, mobile mesonet, rawinsonde, and photographic data are used to produce an integrated analysis of the evolution of the wind, precipitation, and thermodynamic fields in the parent supercell to deduce the processes that resulted in tornadogenesis. Several minutes prior to tornadogenesis, the rear-flank downdraft intensifies, and a secondary rear-flank downdraft forms and cyclonically wraps around the developing tornado. Kinematic and thermodynamic analyses suggest that horizontal vorticity created in the forward flank and hook echo is tilted and then stretched near the developing tornado. Tilting and stretching are enhanced in the developing low-level circulation as the secondary rear-flank downdraft develops, intensifies, and wraps around the circulation center. Shortly thereafter, the tornado forms. Tornadogenesis does not proceed steadily. Strengthening, weakening, and renewed intensification of the tornado are documented in photographic, reflectivity, Doppler velocity, and dual-Doppler fields and are associated with, and shortly follow, changes in the secondary rear-flank downdraft, convergence, location of the vortex relative to the updraft/downdraft couplet, tilting and stretching near and in the developing tornado, and the evolution of total circulation.

Full access
James Marquis
,
Yvette Richardson
,
Paul Markowski
,
David Dowell
,
Joshua Wurman
,
Karen Kosiba
,
Paul Robinson
, and
Glen Romine

Abstract

High-resolution Doppler radar velocities and in situ surface observations collected in a tornadic supercell on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are assimilated into a simulated convective storm using an ensemble Kalman filter (EnKF). A series of EnKF experiments using a 1-km horizontal model grid spacing demonstrates the sensitivity of the cold pool and kinematic structure of the storm to the assimilation of these observations and to different model microphysics parameterizations. An experiment is performed using a finer grid spacing (500 m) and the most optimal data assimilation and model configurations from the sensitivity tests to produce a realistically evolving storm. Analyses from this experiment are verified against dual-Doppler and in situ observations and are evaluated for their potential to confidently evaluate mesocyclone-scale processes in the storm using trajectory analysis and calculations of Lagrangian vorticity budgets. In Part II of this study, these analyses will be further evaluated to learn the roles that mesocyclone-scale processes play in tornado formation, maintenance, and decay. The coldness of the simulated low-level outflow is generally insensitive to the choice of certain microphysical parameterizations, likely owing to the vast quantity of kinematic and in situ thermodynamic observations assimilated. The three-dimensional EnKF wind fields and parcel trajectories resemble those retrieved from dual-Doppler observations within the storm, suggesting that realistic four-dimensional mesocyclone-scale processes are captured. However, potential errors are found in trajectories and Lagrangian three-dimensional vorticity budget calculations performed within the mesocyclone that may be due to the coarse (2 min) temporal resolution of the analyses. Therefore, caution must be exercised when interpreting trajectories in this area of the storm.

Full access
Karen A. Kosiba
,
Joshua Wurman
,
Kevin Knupp
,
Kyle Pennington
, and
Paul Robinson

Abstract

During the Ontario Winter Lake-effect Systems (OWLeS) field campaign, 12 long-lake-axis-parallel (LLAP) snowband events were sampled. Misovortices occurred in 11 of these events, with characteristic diameters of ~800 m, differential velocities of ~11 m s−1, and spacing between vortices of ~3 km. A detailed observational analysis of one such snowband provided further insight on the processes governing misovortex genesis and evolution, adding to the growing body of knowledge of these intense snowband features. On 15–16 December 2013, a misovortex-producing snowband was exceptionally well sampled by ground-based OWLeS instrumentation, which allowed for integrated finescale dual-Doppler and surface thermodynamic analyses. Similar to other studies, horizontal shearing instability (HSI), coupled with stretching, was shown to be the primary genesis mechanism. The HSI location was influenced by snowband-generated boundaries and location of the Arctic front relative to the band. Surface temperature observations, available for the first time, indicated that the misovortices formed along a baroclinic zone. Enhanced mixing, higher radar reflectivity, and increased precipitation rate accompanied the vortices. As the snowband came ashore, OWLeS participants indicated an increase in snowfall and white out conditions with the passage of the snowband. A sharp, small-scale pressure drop, coupled with winds of ~16 m s−1, marked the passage of a misovortex and may be typical of snowband misovortices.

Open access
James N. Marquis
,
Adam C. Varble
,
Paul Robinson
,
T. Connor Nelson
, and
Katja Friedrich

Abstract

Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of (i) the mesoscale and boundary layer flow, and (ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary, or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3–5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1–3 km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.

Open access
Paul Markowski
,
Yvette Richardson
,
James Marquis
,
Joshua Wurman
,
Karen Kosiba
,
Paul Robinson
,
David Dowell
,
Erik Rasmussen
, and
Robert Davies-Jones

Abstract

The authors analyze the pretornadic phase (2100–2148 UTC; tornadogenesis began at 2152 UTC) of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The analysis relies on radar data from the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Cheyenne, Wyoming (KCYS), and a pair of Doppler-on-Wheels (DOW) radars, mobile mesonet observations, and mobile sounding observations.

The storm resembles supercells that have been observed in the past. For example, it develops a couplet of counter-rotating vortices that straddle the hook echo within the rear-flank outflow and are joined by arching vortex lines, with the cyclonic vortex becoming increasingly dominant in the time leading up to tornadogenesis. The outflow in the hook echo region, where sampled, has relatively small virtual potential temperature θυ deficits during this stage of evolution. A few kilometers upstream (north) of the location of maximum vertical vorticity, θυ is no more than 3 K colder than the warmest θυ readings in the inflow of the storm. Forward trajectories originating in the outflow within and around the low-level mesocyclone rise rapidly, implying that the upward-directed perturbation pressure gradient force exceeds the negative buoyancy.

Low-level rotation intensifies in the 2142–2148 UTC period. The intensification is preceded by the formation of a descending reflectivity core (DRC), similar to others that have been documented in some supercells recently. The DRC is associated with a rapid increase in the vertical vorticity and circulation of the low-level mesocyclone.

Full access
Paul Markowski
,
Yvette Richardson
,
James Marquis
,
Robert Davies-Jones
,
Joshua Wurman
,
Karen Kosiba
,
Paul Robinson
,
Erik Rasmussen
, and
David Dowell

Abstract

The dynamical processes responsible for the intensification of low-level rotation prior to tornadogenesis are investigated in the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The circulation of material circuits that converge upon the low-level mesocyclone is principally acquired along the southern periphery of the forward-flank precipitation region, which is a corridor characterized by a horizontal buoyancy gradient; thus, much of the circulation appears to have been baroclinically generated. The descending reflectivity core (DRC) documented in Part I of this paper has an important modulating influence on the circulation of the material circuits. A circuit that converges upon the low-level mesocyclone center prior to the DRC’s arrival at low levels (approximately the arrival of the 55-dBZ reflectivity isosurface in this case) loses some of its previously acquired circulation during the final few minutes of its approach. In contrast, a circuit that approaches the low-level mesocyclone center after the DRC arrives at low levels does not experience the same adversity.

An analysis of the evolution of angular momentum within a circular control disk centered on the low-level mesocyclone reveals that the area-averaged angular momentum in the nearby surroundings of the low-level mesocyclone increases while the mesocyclone is occluding and warm-sector air is being displaced from the near surroundings. The occlusion process reduces the overall negative vertical flux of angular momentum into the control disk and enables the area-averaged angular momentum to continue increasing even though the positive radial influx of angular momentum is decreasing in time.

Full access
Robert J. Trapp
,
Karen A. Kosiba
,
James N. Marquis
,
Matthew R. Kumjian
,
Stephen W. Nesbitt
,
Joshua Wurman
,
Paola Salio
,
Maxwell A. Grover
,
Paul Robinson
, and
Deanna A. Hence

Abstract

On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain.

Free access