Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Paul Robinson x
- Weather and Forecasting x
- Refine by Access: Content accessible to me x
Abstract
Thunderstorms that produce surface hail accumulations, sometimes as large as 60 cm in depth, have significantly affected the residents of the Front Range and High Plains of Colorado and Wyoming by creating hazardous road conditions and endangering lives and property. To date, surface hail accumulation is not part of a routine forecasting or monitoring system. Extensive coordinated hail accumulation reports and operational products designed to identify deep hail accumulating storms in real time are lacking. Kalina et al. used dual-polarization WSR-88D radar observations to calculate hail depth and hail accumulations but never validated the algorithm. This study shows how 20 quality-controlled hail depth reports from the hail depth database built by the Colorado Hail Accumulation from Thunderstorms (CHAT) project are being used to validate the Kalina et al. radar-based hail accumulation algorithm for operational application. The validated algorithm shows increased correlations between radar-derived and reported accumulations for hail depth reports not included in the validation. Furthermore, increases in computational efficiency have allowed the improved algorithm to be used operationally. With an improved hail accumulation algorithm, thunderstorms that produce hail accumulations are more frequently detected than previously reported.
Abstract
Thunderstorms that produce surface hail accumulations, sometimes as large as 60 cm in depth, have significantly affected the residents of the Front Range and High Plains of Colorado and Wyoming by creating hazardous road conditions and endangering lives and property. To date, surface hail accumulation is not part of a routine forecasting or monitoring system. Extensive coordinated hail accumulation reports and operational products designed to identify deep hail accumulating storms in real time are lacking. Kalina et al. used dual-polarization WSR-88D radar observations to calculate hail depth and hail accumulations but never validated the algorithm. This study shows how 20 quality-controlled hail depth reports from the hail depth database built by the Colorado Hail Accumulation from Thunderstorms (CHAT) project are being used to validate the Kalina et al. radar-based hail accumulation algorithm for operational application. The validated algorithm shows increased correlations between radar-derived and reported accumulations for hail depth reports not included in the validation. Furthermore, increases in computational efficiency have allowed the improved algorithm to be used operationally. With an improved hail accumulation algorithm, thunderstorms that produce hail accumulations are more frequently detected than previously reported.
Abstract
Thunderstorms that produce hail accumulations at the surface can impact residents by obstructing roadways, closing airports, and causing localized flooding from hail-clogged drainages. These storms have recently gained an increased interest within the scientific community. However, differences that are observable in real time between these storms and storms that produce nonimpactful hail accumulations have yet to be documented. Similarly, the characteristics within a single storm that are useful to quantify or predict hail accumulations are not fully understood. This study uses lightning and dual-polarization radar data to characterize hail accumulations from three storms that occurred on the same day along the Colorado–Wyoming Front Range. Each storm’s characteristics are verified against radar-derived hail accumulation maps and in situ observations. The storms differed in maximum accumulation, either producing 22 cm, 7 cm, or no accumulation. The magnitude of surface hail accumulations is found to be dependent on a combination of in-cloud hail production, storm translation speed, and hailstone melting. The optimal combination for substantial hail accumulations is enhanced in-cloud hail production, slow storm speed, and limited hailstone melting. However, during periods of similar in-cloud hail production, lesser accumulations are derived when storm speed and/or hailstone melting, identified by radar presentation, is sufficiently large. These results will aid forecasters in identifying when hail accumulations are occurring in real time.
Abstract
Thunderstorms that produce hail accumulations at the surface can impact residents by obstructing roadways, closing airports, and causing localized flooding from hail-clogged drainages. These storms have recently gained an increased interest within the scientific community. However, differences that are observable in real time between these storms and storms that produce nonimpactful hail accumulations have yet to be documented. Similarly, the characteristics within a single storm that are useful to quantify or predict hail accumulations are not fully understood. This study uses lightning and dual-polarization radar data to characterize hail accumulations from three storms that occurred on the same day along the Colorado–Wyoming Front Range. Each storm’s characteristics are verified against radar-derived hail accumulation maps and in situ observations. The storms differed in maximum accumulation, either producing 22 cm, 7 cm, or no accumulation. The magnitude of surface hail accumulations is found to be dependent on a combination of in-cloud hail production, storm translation speed, and hailstone melting. The optimal combination for substantial hail accumulations is enhanced in-cloud hail production, slow storm speed, and limited hailstone melting. However, during periods of similar in-cloud hail production, lesser accumulations are derived when storm speed and/or hailstone melting, identified by radar presentation, is sufficiently large. These results will aid forecasters in identifying when hail accumulations are occurring in real time.