Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Peter G. Veals x
  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Brice E. Coffer
Lindsay C. Maudlin
Peter G. Veals
, and
Adam J. Clark


This study evaluates 24-h forecasts of dryline position from an experimental 4-km grid-spacing version of the Weather Research and Forecasting Model (WRF) run daily at the National Severe Storms Laboratory (NSSL), as well as the 12-km grid-spacing North America Mesoscale Model (NAM) run operationally by the Environmental Modeling Center of NCEP. For both models, 0000 UTC initializations are examined, and for verification 0000 UTC Rapid Update Cycle (RUC) analyses are used. For the period 1 April–30 June 2007–11, 116 cases containing drylines in all three datasets were identified using a manual procedure that considered specific humidity gradient magnitude, temperature, and 10-m wind. For the 24-h NAM forecasts, no systematic east–west dryline placement errors were found, and the majority of the east–west errors fell within the range ±0.5° longitude. The lack of a systematic bias was generally present across all subgroups of cases categorized according to month, weather pattern, and year. In contrast, a systematic eastward bias was found in 24-h NSSL-WRF forecasts, which was consistent across all subgroups of cases. The eastward biases seemed to be largest for the subgroups that favored “active” drylines (i.e., those associated with a progressive synoptic-scale weather system) as opposed to “quiescent” drylines that tend to be present with weaker tropospheric flow and have eastward movement dominated by vertical mixing processes in the boundary layer.

Full access