Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Philip W. Rosenkranz x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Ali D. S. Ali
,
Philip W. Rosenkranz
, and
David H. Staelin

Abstract

The thermal emission spectrum of the atmosphere near the 118 GHz oxygen resonance has been measured from the NASA Convair-990 aircraft as it flew over clear air and storms. The instrument viewed the ground 45° from nadir with a 7.5° beamwidth. Brightness temperatures were measured in six bands 200 MHz wide centered at frequencies 821–1891 MHz from the line at 118.7505 GHz. The double-sideband super-heterodyne receiver had ∼1 K sensitivity for 1 s integration. Comparison of observed clear air brightness temperatures (from 238 mb) with those computed for a coincident dropsonde yielded agreement within 1.4 K; the retrieved temperature profile agreed with the dropsonde with an average magnitude error of 1.4 K. Observations over precipitation yielded brightness perturbations as large as 30 K.

Full access

AIRS

Improving Weather Forecasting and Providing New Data on Greenhouse Gases

MOUSTAFA T. CHAHINE
,
THOMAS S. PAGANO
,
HARTMUT H. AUMANN
,
ROBERT ATLAS
,
CHRISTOPHER BARNET
,
JOHN BLAISDELL
,
LUKE CHEN
,
MURTY DIVAKARLA
,
ERIC J. FETZER
,
MITCH GOLDBERG
,
CATHERINE GAUTIER
,
STEPHANIE GRANGER
,
SCOTT HANNON
,
FREDRICK W. IRION
,
RAMESH KAKAR
,
EUGENIA KALNAY
,
BJORN H. LAMBRIGTSEN
,
SUNG-YUNG LEE
,
JOHN Le MARSHALL
,
W. WALLACE MCMILLAN
,
LARRY MCMILLIN
,
EDWARD T. OLSEN
,
HENRY REVERCOMB
,
PHILIP ROSENKRANZ
,
WILLIAM L. SMITH
,
DAVID STAELIN
,
L. LARRABEE STROW
,
JOEL SUSSKIND
,
DAVID TOBIN
,
WALTER WOLF
, and
LIHANG ZHOU

The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAA's requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols.

The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECMWF and the Met Office have also reported positive forecast impacts due AIRS.

AIRS is a hyperspectral sounder with 2,378 infrared channels between 3.7 and 15.4 μm. NOAA/NESDIS routinely distributes AIRS data within 3 hours to NWP centers around the world. The AIRS design represents a breakthrough in infrared space instrumentation with measurement stability and accuracies far surpassing any current research or operational sounder..The results we describe in this paper are “work in progress,” and although significant accomplishments have already been made much more work remains in order to realize the full potential of this suite of instruments.

Full access