Search Results
Abstract
The accuracy and uncertainty of radar echo-top heights estimated by ground-based radars remain largely unknown despite their critical importance for applications ranging from aviation weather forecasting to severe weather diagnosis. Because the vantage point of space is more suited than that of ground-based radars for the estimation of echo-top heights, the use of spaceborne radar observations is explored as an external reference for cross comparison. An investigation has been carried out across the conterminous United States by comparing the NOAA/National Severe Storms Laboratory Multi-Radar Multi-Sensor (MRMS) system with the space-based radar on board the NASA–JAXA Global Precipitation Measurement satellite platform. No major bias was assessed between the two products. An annual cycle of differences is found, driven by an underestimation of the stratiform cloud echo-top heights and an overestimation of the convective ones. The investigation of the systematic biases for different radar volume coverage patterns (VCP) shows that scanning strategies with fewer tilts and greater voids as VCP 21/121/221 contribute to overestimations observed for high MRMS tops. For VCP 12/212, the automated volume scan evaluation and termination (AVSET) function increases the radar cone of silence, causing overestimations when the echo top lies above the highest elevation scan. However, it seems that for low echo tops the shorter refresh rates contribute to mitigate underestimations, especially in stratiform cases.
Abstract
The accuracy and uncertainty of radar echo-top heights estimated by ground-based radars remain largely unknown despite their critical importance for applications ranging from aviation weather forecasting to severe weather diagnosis. Because the vantage point of space is more suited than that of ground-based radars for the estimation of echo-top heights, the use of spaceborne radar observations is explored as an external reference for cross comparison. An investigation has been carried out across the conterminous United States by comparing the NOAA/National Severe Storms Laboratory Multi-Radar Multi-Sensor (MRMS) system with the space-based radar on board the NASA–JAXA Global Precipitation Measurement satellite platform. No major bias was assessed between the two products. An annual cycle of differences is found, driven by an underestimation of the stratiform cloud echo-top heights and an overestimation of the convective ones. The investigation of the systematic biases for different radar volume coverage patterns (VCP) shows that scanning strategies with fewer tilts and greater voids as VCP 21/121/221 contribute to overestimations observed for high MRMS tops. For VCP 12/212, the automated volume scan evaluation and termination (AVSET) function increases the radar cone of silence, causing overestimations when the echo top lies above the highest elevation scan. However, it seems that for low echo tops the shorter refresh rates contribute to mitigate underestimations, especially in stratiform cases.
Abstract
Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.
Significance Statement
To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.
Abstract
Precipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.
Significance Statement
To understand how the accuracy of satellite precipitation depends on weather conditions, we compare the satellite estimates of precipitation against ground radars in the United States, using cloud regimes as a proxy for different recurring atmospheric systems. Consistent with previous studies, we found that errors in the satellite precipitation vary under different regimes. Satellite precipitation is, reassuringly, more accurate for storm systems that produce intense precipitation. However, in systems that produce weak or isolated precipitation, the errors are larger due to retrieval limitations. These findings highlight the important role of atmospheric states on the accuracy of satellite precipitation and the potential of cloud regimes for categorizing the global atmosphere.
Abstract
The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.
Abstract
The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.
Abstract
As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.
Abstract
As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.
Abstract
Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes the Dual-Frequency Precipitation Radar (DPR) retrieval and its single-frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE), and two passive microwave retrievals, i.e., the Goddard Profiling algorithm (GPROF) and the Snow Retrieval Algorithm for GMI (SLALOM). The 2C-SNOW retrieval has the highest Heidke skill score (HSS) for detecting snowfall among the products analyzed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of 2 compared to MRMS. Large discrepancies (RMSE of 0.7–1.5 mm h−1) between spaceborne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.
Abstract
Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes the Dual-Frequency Precipitation Radar (DPR) retrieval and its single-frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE), and two passive microwave retrievals, i.e., the Goddard Profiling algorithm (GPROF) and the Snow Retrieval Algorithm for GMI (SLALOM). The 2C-SNOW retrieval has the highest Heidke skill score (HSS) for detecting snowfall among the products analyzed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of 2 compared to MRMS. Large discrepancies (RMSE of 0.7–1.5 mm h−1) between spaceborne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.
Abstract
Monitoring changes of precipitation phase from space is important for understanding the mass balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for prognostic detection of precipitation and its phase using passive microwave observations from the Global Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to search through an a priori database populated with coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow cover, when compared to other surface types. The main reason is found to be related to the ability of the algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold snow-covered surfaces.
Abstract
Monitoring changes of precipitation phase from space is important for understanding the mass balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for prognostic detection of precipitation and its phase using passive microwave observations from the Global Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to search through an a priori database populated with coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow cover, when compared to other surface types. The main reason is found to be related to the ability of the algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold snow-covered surfaces.
Abstract
As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.
Abstract
As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.
Abstract
NASA’s multisatellite precipitation product from the Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) product, is validated over tropical and high-latitude oceans from June 2014 to August 2021. This oceanic study uses the GPM Validation Network’s island-based radars to assess IMERG when the GPM Core Observatory’s Microwave Imager (GMI) observes precipitation at these sites (i.e., IMERG-GMI). Error tracing from the Level 3 (gridded) IMERG V06B product back through to the input Level 2 (satellite footprint) Goddard Profiling Algorithm GMI V05 climate (GPROF-CLIM) product quantifies the errors separately associated with each step in the gridding and calibration of the estimates from GPROF-CLIM to IMERG-GMI. Mean relative bias results indicate that IMERG-GMI V06B overestimates Alaskan high-latitude oceanic precipitation by +147% and tropical oceanic precipitation by +12% with respect to surface radars. GPROF-CLIM V05 overestimates Alaskan oceanic precipitation by +15%, showing that the IMERG algorithm’s calibration adjustments to the input GPROF-CLIM precipitation estimates increase the mean relative bias in this region. In contrast, IMERG adjustments are minimal over tropical waters with GPROF-CLIM overestimating oceanic precipitation by +14%. This study discovered that the IMERG V06B gridding process incorrectly geolocated GPROF-CLIM V05 precipitation estimates by 0.1° eastward in the latitude band 75°N–75°S, which has been rectified in the IMERG V07 algorithm. Correcting for the geolocation error in IMERG-GMI V06B improved oceanic statistics, with improvements greater in tropical waters than Alaskan waters. This error tracing approach enables a high-precision diagnosis of how different IMERG algorithm steps contribute to and mitigate errors, demonstrating the importance of collaboration between evaluation studies and algorithm developers.
Significance Statement
Evaluation of IMERG’s oceanic performance is very limited to date. This study uses the GPM Validation Network to conduct the first extensive assessment of IMERG V06B at its native resolution over both high-latitude and tropical oceans, and traces errors in IMERG-GMI back through to the input GPROF-CLIM GMI product. IMERG-GMI overestimates tropical oceanic precipitation (+12%) and strongly overestimates Alaskan oceanic precipitation (+147%) with respect to the island-based radars studied. IMERG’s GMI estimates are assessed as these should be the optimal estimates within the multisatellite product due to the GMI’s status as calibrator of the GPM passive microwave constellation.
Abstract
NASA’s multisatellite precipitation product from the Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) product, is validated over tropical and high-latitude oceans from June 2014 to August 2021. This oceanic study uses the GPM Validation Network’s island-based radars to assess IMERG when the GPM Core Observatory’s Microwave Imager (GMI) observes precipitation at these sites (i.e., IMERG-GMI). Error tracing from the Level 3 (gridded) IMERG V06B product back through to the input Level 2 (satellite footprint) Goddard Profiling Algorithm GMI V05 climate (GPROF-CLIM) product quantifies the errors separately associated with each step in the gridding and calibration of the estimates from GPROF-CLIM to IMERG-GMI. Mean relative bias results indicate that IMERG-GMI V06B overestimates Alaskan high-latitude oceanic precipitation by +147% and tropical oceanic precipitation by +12% with respect to surface radars. GPROF-CLIM V05 overestimates Alaskan oceanic precipitation by +15%, showing that the IMERG algorithm’s calibration adjustments to the input GPROF-CLIM precipitation estimates increase the mean relative bias in this region. In contrast, IMERG adjustments are minimal over tropical waters with GPROF-CLIM overestimating oceanic precipitation by +14%. This study discovered that the IMERG V06B gridding process incorrectly geolocated GPROF-CLIM V05 precipitation estimates by 0.1° eastward in the latitude band 75°N–75°S, which has been rectified in the IMERG V07 algorithm. Correcting for the geolocation error in IMERG-GMI V06B improved oceanic statistics, with improvements greater in tropical waters than Alaskan waters. This error tracing approach enables a high-precision diagnosis of how different IMERG algorithm steps contribute to and mitigate errors, demonstrating the importance of collaboration between evaluation studies and algorithm developers.
Significance Statement
Evaluation of IMERG’s oceanic performance is very limited to date. This study uses the GPM Validation Network to conduct the first extensive assessment of IMERG V06B at its native resolution over both high-latitude and tropical oceans, and traces errors in IMERG-GMI back through to the input GPROF-CLIM GMI product. IMERG-GMI overestimates tropical oceanic precipitation (+12%) and strongly overestimates Alaskan oceanic precipitation (+147%) with respect to the island-based radars studied. IMERG’s GMI estimates are assessed as these should be the optimal estimates within the multisatellite product due to the GMI’s status as calibrator of the GPM passive microwave constellation.
Abstract
Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.
Abstract
Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.