Search Results
Abstract
This paper explores whether particles within uniformly spaced generating cells falling at terminal velocity within observed 2D wind fields and idealized deformation flow beneath cloud top can be reorganized consistent with the presence of single and multibanded structures present on WSR-88D radars. In the first experiment, two-dimensional wind fields, calculated along cross sections normal to the long axis of snowbands observed during three northeast U.S. winter storms, were taken from the initialization of the High-Resolution Rapid Refresh model. This experiment demonstrated that the greater the residence time of the particles in each of the three storms, the greater particle reorganization occurred. For experiments with longer residence times, increases in particle concentrations were nearly or directly collocated with reflectivity bands. For experiments with shorter residence times, particle reorganization still conformed to the band features but with less concentration enhancement. This experiment demonstrates that the combination of long particle residence time and net convergent cross-sectional flow through the cloud depth is sufficient to reorganize particles into locations consistent with precipitation bands. Increased concentrations of ice particles can then contribute, along with any dynamic forcing, to the low-level reflectivity bands seen on WSR-88D radars. In a second experiment, the impact of flow deformation on the reorganization of falling ice particles was investigated using an idealized kinematic model with stretching deformation flow of different depths and magnitudes. These experiments showed that deformation flow provides for little particle reorganization given typical deformation layer depths and magnitudes within the comma head of such storms.
Significance Statement
Past research with vertically pointing and scanning radars presents two different perspectives regarding snowfall organization in winter storms. Vertically pointing radars often observe cloud-top generating cells with precipitation fallstreaks descending into a broad stratiform echo at lower altitudes. In contrast, scanning radars often observe snowfall organized in quasi-linear bands. This work attempts to provide a connection between these two perspectives by examining how two-dimensional convergent and deformation flow occurring in winter storms can contribute to the reorganization of snowfall between cloud top and the ground.
Abstract
This paper explores whether particles within uniformly spaced generating cells falling at terminal velocity within observed 2D wind fields and idealized deformation flow beneath cloud top can be reorganized consistent with the presence of single and multibanded structures present on WSR-88D radars. In the first experiment, two-dimensional wind fields, calculated along cross sections normal to the long axis of snowbands observed during three northeast U.S. winter storms, were taken from the initialization of the High-Resolution Rapid Refresh model. This experiment demonstrated that the greater the residence time of the particles in each of the three storms, the greater particle reorganization occurred. For experiments with longer residence times, increases in particle concentrations were nearly or directly collocated with reflectivity bands. For experiments with shorter residence times, particle reorganization still conformed to the band features but with less concentration enhancement. This experiment demonstrates that the combination of long particle residence time and net convergent cross-sectional flow through the cloud depth is sufficient to reorganize particles into locations consistent with precipitation bands. Increased concentrations of ice particles can then contribute, along with any dynamic forcing, to the low-level reflectivity bands seen on WSR-88D radars. In a second experiment, the impact of flow deformation on the reorganization of falling ice particles was investigated using an idealized kinematic model with stretching deformation flow of different depths and magnitudes. These experiments showed that deformation flow provides for little particle reorganization given typical deformation layer depths and magnitudes within the comma head of such storms.
Significance Statement
Past research with vertically pointing and scanning radars presents two different perspectives regarding snowfall organization in winter storms. Vertically pointing radars often observe cloud-top generating cells with precipitation fallstreaks descending into a broad stratiform echo at lower altitudes. In contrast, scanning radars often observe snowfall organized in quasi-linear bands. This work attempts to provide a connection between these two perspectives by examining how two-dimensional convergent and deformation flow occurring in winter storms can contribute to the reorganization of snowfall between cloud top and the ground.
Abstract
Cloud-top phase (CTP) impacts cloud albedo and pathways for ice particle nucleation, growth, and fallout within extratropical cyclones. This study uses airborne lidar, radar, and Rapid Refresh analysis data to characterize CTP within extratropical cyclones as a function of cloud-top temperature (CTT). During the 2020, 2022, and 2023 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign deployments, the Earth Resources 2 (ER-2) aircraft flew 26 research flights over the northeast and midwest United States to sample the cloud tops of a variety of extratropical cyclones. A training dataset was developed to create probabilistic phase classifications based on Cloud Physics Lidar measurements of known ice and liquid clouds. These classifications were then used to quantify dominant CTP in the top 150 m of clouds sampled by the Cloud Physics Lidar in storms during IMPACTS. Case studies are presented illustrating examples of supercooled liquid water at cloud top at different CTT ranges (−3° < CTTs < −35°C) within extratropical cyclones. During IMPACTS, 19.2% of clouds had supercooled liquid water present at cloud top. Supercooled liquid was the dominant phase in extratropical cyclone cloud tops when CTTs were >−20°C. Liquid-bearing cloud tops were found at CTTs as cold as −37°C.
Significance Statement
Identifying supercooled liquid cloud tops’ frequency is crucial for understanding ice nucleation mechanisms at cloud top, cloud radiative effects, and aircraft icing. In this study, airborne lidar, radar, and model temperature data from 26 research flights during the NASA IMPACTS campaign are used to characterize extratropical cyclone cloud-top phase (CTP) as a function of cloud-top temperature (CTT). The results show that liquid was the dominant CTP present in extratropical cyclone cloud tops when CTTs were >−20°C with decreasing supercooled liquid cloud-top frequency at temperatures < −20°C. Nevertheless, liquid was present at CTTs as cold as −37°C.
Abstract
Cloud-top phase (CTP) impacts cloud albedo and pathways for ice particle nucleation, growth, and fallout within extratropical cyclones. This study uses airborne lidar, radar, and Rapid Refresh analysis data to characterize CTP within extratropical cyclones as a function of cloud-top temperature (CTT). During the 2020, 2022, and 2023 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign deployments, the Earth Resources 2 (ER-2) aircraft flew 26 research flights over the northeast and midwest United States to sample the cloud tops of a variety of extratropical cyclones. A training dataset was developed to create probabilistic phase classifications based on Cloud Physics Lidar measurements of known ice and liquid clouds. These classifications were then used to quantify dominant CTP in the top 150 m of clouds sampled by the Cloud Physics Lidar in storms during IMPACTS. Case studies are presented illustrating examples of supercooled liquid water at cloud top at different CTT ranges (−3° < CTTs < −35°C) within extratropical cyclones. During IMPACTS, 19.2% of clouds had supercooled liquid water present at cloud top. Supercooled liquid was the dominant phase in extratropical cyclone cloud tops when CTTs were >−20°C. Liquid-bearing cloud tops were found at CTTs as cold as −37°C.
Significance Statement
Identifying supercooled liquid cloud tops’ frequency is crucial for understanding ice nucleation mechanisms at cloud top, cloud radiative effects, and aircraft icing. In this study, airborne lidar, radar, and model temperature data from 26 research flights during the NASA IMPACTS campaign are used to characterize extratropical cyclone cloud-top phase (CTP) as a function of cloud-top temperature (CTT). The results show that liquid was the dominant CTP present in extratropical cyclone cloud tops when CTTs were >−20°C with decreasing supercooled liquid cloud-top frequency at temperatures < −20°C. Nevertheless, liquid was present at CTTs as cold as −37°C.
Abstract
On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L−1, suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented.
Significance Statement
Snowstorms over the northeast United States have major impacts on travel, power availability, and commerce. The processes by which snow forms in winter storms over this region are complex and their snowfall totals are hard to forecast accurately because of a poor understanding of the microphysical processes within the clouds composing the storms. This paper presents a case study from the NASA IMPACTS field campaign that involved two aircraft sampling the storm simultaneously with radars, and probes that measure the microphysical properties within the storm. The paper examines how variations in stability and frontal structure influence the microphysical evolution of ice particles as they fall from cloud top to the surface within the storm.
Abstract
On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L−1, suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented.
Significance Statement
Snowstorms over the northeast United States have major impacts on travel, power availability, and commerce. The processes by which snow forms in winter storms over this region are complex and their snowfall totals are hard to forecast accurately because of a poor understanding of the microphysical processes within the clouds composing the storms. This paper presents a case study from the NASA IMPACTS field campaign that involved two aircraft sampling the storm simultaneously with radars, and probes that measure the microphysical properties within the storm. The paper examines how variations in stability and frontal structure influence the microphysical evolution of ice particles as they fall from cloud top to the surface within the storm.