Search Results

You are looking at 91 - 100 of 6,116 items for :

  • Waves, oceanic x
  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All
Yalin Fan, Isaac Ginis, and Tetsu Hara

the ocean response to TCs, the momentum flux into currents τ c is the most critical parameter. Research and operational coupled atmosphere–ocean models usually assume that τ c is identical to the momentum flux from air (wind stress) τ air ; that is, no net momentum is gained (or lost) by surface waves. This assumption, however, is invalid when the surface wave field is growing or decaying. The main objective of this paper is to investigate the effect of surface gravity waves on the momentum

Full access
Yair De Leon and Nathan Paldor

various waves can only be determined when boundary conditions are imposed on the general solutions of the (ordinary) differential equations. The imposed boundary conditions are either regularity (or vanishing) of the meridional velocity component at infinity, or its vanishing at two walls that are assumed to exist at some given latitudes. While the infinite domain is hard to justify on the β plane [where only first terms of f  ( y ) are retained], the assumption that two walls exist in the ocean is

Full access
Jesse M. Cusack, Alberto C. Naveira Garabato, David A. Smeed, and James B. Girton

1. Introduction Lee waves can be generally defined as internal gravity waves generated by the interaction of a quasi-steady stratified flow with topography. Observations of such phenomena in the ocean are rare, with notable examples including high-frequency, tidally forced waves in the lee of ridges (e.g., Pinkel et al. 2012 ; Alford et al. 2014 ). Propagating waves must have a frequency between the local inertial frequency f and buoyancy frequency N , which precludes their generation in

Full access
Jaclyn N. Brown, J. Stuart Godfrey, and Susan E. Wijffels

1. Introduction The ocean currents in the equatorial Pacific are significantly nonlinear. Contributing to this nonlinearity are eddies, such as tropical instability waves (TIWs) (e.g., Legeckis 1997 ; McCreary and Yu 1992 ; Baturin and Niiler 1997 ). TIWs appear as oscillations of the currents, sea level, and sea surface temperature in the eastern equatorial Pacific. These disturbances are mixed barotropic/baroclinic instabilities feeding on the kinetic and potential energy of the mean

Full access
Antoine Hochet, Thierry Huck, and Alain Colin de Verdière

1. Introduction During the last 20 yr, the measurements of the ocean surface properties by satellite instruments have allowed us to significantly increase our knowledge of ocean dynamics. Chelton and Schlax (1996) were among the first to show that large-scale anomalies, propagating to the west, were observable in the altimetry. Since then, a large number of authors have described these anomalies, generally depicted as Rossby waves, using various techniques such as a Hovmöller diagram

Full access
Greg Holloway

MARCH 1982 NOTES AND CORRESPONDENCE 293NOTES AND CORRESPONDENCEOn Interaction Time Scales of Oceanic Internal Waves GREG HOLLOWAYtDepartment of Oceanography, University of Washington, Seattle 981958 July 1981 and 17 November 1981ABSTRACT When applied to oceanic internal waves of observed amplitudes, a class.of weak wave-wave interactiontheories predict certain very rapid

Full access
Angélique Melet, Robert Hallberg, Sonya Legg, and Maxim Nikurashin

1. Introduction The breaking of internal waves represents the main source of diapycnal mixing in the ocean interior ( Garrett and Kunze 2007 ). Diapycnal mixing in turn plays a key role in maintaining the ocean stratification and the meridional overturning circulation (MOC): the convective creation of dense surface water that occurs in a few locations of the global ocean (e.g., Southern Ocean, Nordic seas, and Labrador Sea) is balanced by the upwelling of deep water driven by both turbulent

Full access
Jamie MacMahan

1. Introduction Over land, the geometric roughness k and corresponding aerodynamic roughness z o for surface features can be considered temporally constant. Over the open ocean, z o is a function of both surface texture (associated viscous surface stresses) and the local wave field (associated form drag and flow separation). The associated stresses are dynamically coupled with the wind, can evolve together, and transition from viscous stresses to wave stresses. Nonlocal wave fields

Full access
Jan Erik Weber

1. Introduction It has been known for a long time that surface water waves carry mean momentum ( Stokes 1847 ). For monochromatic waves in a viscous nonrotating fluid, the pioneering paper is that of Longuet-Higgins (1953) . For a direct Lagrangian approach to wave drift in a rotating ocean, earlier treatments of this problem are found in papers such as those of Chang (1969) , Ünlüata and Mei (1970) , and Weber (1983a , b ). Also the generalized Lagrangian-mean formulation of Andrews and

Full access
W. Perrie and B. Toulany

total energy E ∗ c o can be parameterized by a fetch-law relation in terms of inverse wave age U ∗ c / C p , E ∗ c o = ϵ ( U ∗ c / C p ) γ , (4) where γ and ϵ are appropriate constants. Equation (4) is important because it relates total energy E ∗ c o and inverse wave age U ∗ c / C p . These are open ocean variables specifying spectral maturity. Fetch relations such as Eq. (4) obtained correlation coefficients as high as 0.99 with respect to the CASP data ( Perrie and Toulany 1990

Full access