Search Results

You are looking at 111 - 120 of 159 items for :

  • Tornadogenesis x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
M. R. Hjelmfelt

Meteorological Observations and Instrumentation, Amer. Me teor. Soc., 321-325.---, and J. A. Flueck, 1986: A study of the methodology of low altitude wind shear detection with special emphasis on the low level wind shear alert system concept. Federal Aviation Admin istration report DOT/FAA/PM-86/4, 101 pp.Wilson, J. W., 1986: Tornadogenesis by non-precipitation induced wind shears. Mon. Wea. Rev., 114, 270-284.---, and W. E. Schreiber, 1986: Initiation of convective storms at radar

Full access
Richard Rotunno

dual-Doppler radar. Mon. Wea. Rev., 105, 113-120.----, 1978: Mesocyclone evolution and tornadogenesis: some observations. Mon. Wed. Rev., 100, 995-1011.Brown, R. A, and L. R. Lemon, 1976: Single Doppler racist ~ortex recognition: Part II--tornadic vortex signatures. Preprlnts 17th Conf. Radar Meteor., Seattle, Amer: Meteor. Soc., 104 109.Church, C. R., J. T. Snow and E. M. Agee, 1977: Tornado vortex simulation at Purdue University. Bull. Amer. Meteor. Soc., 58, 900-908.Davies Jones, R

Full access
Tsutomu Takahashi
and
Kazunori Shimura

mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev , 107 , 1184 – 1197 . LeMone , M. A. , E. J. Zipser , and S. B. Trier , 1998 : The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci , 55 , 3493 – 3518 . Macklin , W. C. , 1962 : The density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc , 88 , 30 – 50 . Mason , B. J. , 1956 : On

Full access
Michael S. Buban
and
Conrad L. Ziegler

: 10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2 . Lee , B. D. , and R. B. Wilhelmson , 1997 : The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary . J. Atmos. Sci. , 54 , 32 – 60 , doi: 10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2 . Mansell , E. R. , C. L. Ziegler , and E. C. Bruning , 2010 : Simulated electrification of a small thunderstorm with two-moment bulk

Full access
John M. Peters
,
Hugh Morrison
,
Christopher J. Nowotarski
,
Jake P. Mulholland
, and
Richard L. Thompson

potential are dynamically coupled with updrafts (e.g., Marion and Trapp 2019 ), precipitation production relates to vertical mass flux and consequently w ( Doswell et al. 1996 ), and vertical accelerations in the lower part of updrafts play a critical role in tornadogenesis (e.g., Coffer and Parker 2015 ). Convective available potential energy (CAPE; e.g., Moncrieff and Miller 1976 ) has long been used as a general guide for predicting w in supercell updrafts (e.g., Thompson et al. 2003 , 2007

Free access
L. Jay Miller
,
John D. Tuttle
, and
Charles A. Knight

initial particles .as small as 100 urn. This path with its slowerhorizontal wind speeds, compared for example to onesin the forward overhang, allowed a nearly perfect matchbetween slowly increasing updraft and fallspeed (Fig.22). Such a condition appears to be essential to theproduction of large hail (Browning et al., 1963). Notonly is the middle level mesocyclone intimately relatedto tornadogenesis (Lemon and Doswell, 1979), but itis also strongly connected to the production of largeand giant

Full access
Joanne Simpson
,
Bruce R. Morton
,
Michael C. McCumber
, and
Richard S. Penc

), implying that mesocyclone formation isa necessary but not sufficient condition for tornadogenesis. This result is scarcely surprising in view of thesensitive balance between circulation and total forcerequired to maintain a strong vortex core (Morton,1966, 1969; Turner, 1966), but does little to resolvewhat may be the necessary balance of mechanisms.A basic hypothesis of this research is that cumulusscale parent vortices, with vorticity magnitudes comparable to those of midlatitude mesocyclones, are

Full access
Robert Davies-Jones

. Thunderstorms: A Social, Scientific and Technological Documentary, Vol. 2, E. Kessler, Ed., U.S. Govt. Printing Office, Washington DC, 297-361.--, 1982b: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Vefiag, 175-189.--, R. Rabin and K. Brewster, 1984: A short term forecast model for thunderstorm rotation. Proceedings Nowcasting-H Syrup. (ESA SP-208), Norrk6ping, Sweden, European Space Agency, 367

Full access
Robert E. Schlesinger

-1754. - , and , 1981: Satellite-observed cloud-top height changes in tornadic thunderstorms. J. Appl. Meteor., 20, 1369-1375. -- and D. A. Moore, 1981: Spiral feature observed at top of rotating thunderstorm. Mon. Wea. Rev., 109, 1124-1129.Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 995-1011.Clark, T. L., 1979: Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe

Full access
Conrad L. Ziegler

analysis of cloud drop growth by collec tion: Part II. Single initial distributions. J. Atmos. Sci., 31, 1825 1831. , and --, 1974c: An analysis of cloud drop growth by collec tion: Part III. Accretion and self-collection. J. Atmos. Sci., 31, 2118-2126.Bigg, E. K., 1953: The supemooling of water. ?roc. Phys. Soc. London, I~66, 668-694.Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mort. Wea. Rev., 112,1033-1052.Brazier-Smith, P. R., S. G

Full access