Search Results
: Numerical experiments on the influence of the mesoscale circulation on the cumulus scale. J. Atmos. Sci., 33, 252-261.Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 94, 367-374.Danielsen, E. F., 1977: A conceptual theory of tornadogenesis. Part I: Large-scale generation of severe storm potentials. Meteor. Monogr., Amer. Meteor. Soc. (in preparation).Eisen, P. A., 1972: A mesoscale study of the Oklahoma squall line of 8-and 9 June 1966. M.S. thesis, Dept. of
: Numerical experiments on the influence of the mesoscale circulation on the cumulus scale. J. Atmos. Sci., 33, 252-261.Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 94, 367-374.Danielsen, E. F., 1977: A conceptual theory of tornadogenesis. Part I: Large-scale generation of severe storm potentials. Meteor. Monogr., Amer. Meteor. Soc. (in preparation).Eisen, P. A., 1972: A mesoscale study of the Oklahoma squall line of 8-and 9 June 1966. M.S. thesis, Dept. of
. Wilhelmson , 1978 : The simulation of three-dimensional convective storm dynamics . J. Atmos. Sci. , 35 , 1070 – 1096 , doi: 10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2 . Knight , C. A. , and K. R. Knupp , 1986 : Precipitation growth trajectories in a CCOPE storm . J. Atmos. Sci. , 43 , 1057 – 1073 , doi: 10.1175/1520-0469(1986)043<1057:PGTIAC>2.0.CO;2 . Lemon , L. R. , and C. A. Doswell , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis
. Wilhelmson , 1978 : The simulation of three-dimensional convective storm dynamics . J. Atmos. Sci. , 35 , 1070 – 1096 , doi: 10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2 . Knight , C. A. , and K. R. Knupp , 1986 : Precipitation growth trajectories in a CCOPE storm . J. Atmos. Sci. , 43 , 1057 – 1073 , doi: 10.1175/1520-0469(1986)043<1057:PGTIAC>2.0.CO;2 . Lemon , L. R. , and C. A. Doswell , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis
.1143/JPSJ.50.3517 . Lee , B. D. , and R. B. Wilhelmson , 1997 : The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary . J. Atmos. Sci. , 54 , 32 – 60 , doi: 10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2 . Lee , B. D. , C. A. Finley , and R. B. Wilhelmson , 2000 : Simulating deep convection initiation by misocyclones. Preprints, 20th Conf. on Severe Local Storms , Orlando, FL
.1143/JPSJ.50.3517 . Lee , B. D. , and R. B. Wilhelmson , 1997 : The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary . J. Atmos. Sci. , 54 , 32 – 60 , doi: 10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2 . Lee , B. D. , C. A. Finley , and R. B. Wilhelmson , 2000 : Simulating deep convection initiation by misocyclones. Preprints, 20th Conf. on Severe Local Storms , Orlando, FL
>2.0.CO;2 . Cunningham , P. , and M. J. Reeder , 2009 : Severe convective storms initiated by intense wildfires: Numerical simulations of pyro-convection and pyro-tornadogenesis. Geophys. Res. Lett. , 36 , L12812 , doi: 10.1029/2009GL039262 . Cunningham , P. , S. L. Goodrick , M. Y. Hussaini , and R. R. Linn , 2005 : Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires . Int. J. Wildland Fire , 14 , 61 – 75 , doi: 10.1071/WF04044
>2.0.CO;2 . Cunningham , P. , and M. J. Reeder , 2009 : Severe convective storms initiated by intense wildfires: Numerical simulations of pyro-convection and pyro-tornadogenesis. Geophys. Res. Lett. , 36 , L12812 , doi: 10.1029/2009GL039262 . Cunningham , P. , S. L. Goodrick , M. Y. Hussaini , and R. R. Linn , 2005 : Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires . Int. J. Wildland Fire , 14 , 61 – 75 , doi: 10.1071/WF04044
decrease hail production may be consistent with these suggestions; increased υ -component shear at low levels is associated with increases in storm-relative helicity. Further, for the hodographs considered in this study with similar lengths, the one with larger 0–3-km storm-relative helicity tends to have less hail at the surface. All else being equal, hodographs with greater low-level curvature and/or larger low-level storm-relative helicity would tend to be more favorable for tornadogenesis (e
decrease hail production may be consistent with these suggestions; increased υ -component shear at low levels is associated with increases in storm-relative helicity. Further, for the hodographs considered in this study with similar lengths, the one with larger 0–3-km storm-relative helicity tends to have less hail at the surface. All else being equal, hodographs with greater low-level curvature and/or larger low-level storm-relative helicity would tend to be more favorable for tornadogenesis (e
into the core of the thunderstorm. Chagnon and Gray (2009) showed that horizontal PV dipoles in the UTLS can be explained by tilting of horizontal vorticity into the vertical. Contemporary conceptual models of tornadogenesis include the idea of an updraft bending horizontally oriented vorticity, associated with downdraft outflow, into a horseshoe shape, which implies the creation of a dipole or pair of vertically oriented vortices ( Markowski and Richardson 2010 ). First, the budgets of linearized
into the core of the thunderstorm. Chagnon and Gray (2009) showed that horizontal PV dipoles in the UTLS can be explained by tilting of horizontal vorticity into the vertical. Contemporary conceptual models of tornadogenesis include the idea of an updraft bending horizontally oriented vorticity, associated with downdraft outflow, into a horseshoe shape, which implies the creation of a dipole or pair of vertically oriented vortices ( Markowski and Richardson 2010 ). First, the budgets of linearized
. B. , R. B. Wilhelmson , and P. S. Ray , 1981 : Observed and numerically simulated structure of a mature supercell thunderstorm . J. Atmos. Sci. , 38 , 1558 – 1580 , doi: 10.1175/1520-0469(1981)038<1558:OANSSO>2.0.CO;2 . 10.1175/1520-0469(1981)038<1558:OANSSO>2.0.CO;2 Lemon , L. R. , and C. A. Doswell , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis . Mon. Wea. Rev. , 107 , 1184 – 1197 , doi: 10.1175/1520-0493(1979)107<1184:STEAMS>2
. B. , R. B. Wilhelmson , and P. S. Ray , 1981 : Observed and numerically simulated structure of a mature supercell thunderstorm . J. Atmos. Sci. , 38 , 1558 – 1580 , doi: 10.1175/1520-0469(1981)038<1558:OANSSO>2.0.CO;2 . 10.1175/1520-0469(1981)038<1558:OANSSO>2.0.CO;2 Lemon , L. R. , and C. A. Doswell , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis . Mon. Wea. Rev. , 107 , 1184 – 1197 , doi: 10.1175/1520-0493(1979)107<1184:STEAMS>2
, 1602 – 1617 , https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2 . Mapes , B. E. , 1993 : Gregarious tropical convection . J. Atmos. Sci. , 50 , 2026 – 2037 , https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2 . Markowski , P. M. , and Y. P. Richardson , 2014 : The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations . J. Atmos. Sci. , 71 , 243 – 275 , https://doi.org/10.1175/JAS-D-13
, 1602 – 1617 , https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2 . Mapes , B. E. , 1993 : Gregarious tropical convection . J. Atmos. Sci. , 50 , 2026 – 2037 , https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2 . Markowski , P. M. , and Y. P. Richardson , 2014 : The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations . J. Atmos. Sci. , 71 , 243 – 275 , https://doi.org/10.1175/JAS-D-13
. Geophys. Res. Atmos. , 124 , 664 – 683 , https://doi.org/10.1029/2018JD029055 . 10.1029/2018JD029055 Marion , G. R. , and R. J. Trapp , 2021 : Controls of quasi-linear convective system tornado intensity . J. Atmos. Sci. , 78 , 1189 – 1205 , https://doi.org/10.1175/JAS-D-20-0164.1 . 10.1175/JAS-D-20-0164.1 Markowski , P. M. , and Y. P. Richardson , 2014 : The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations . J. Atmos
. Geophys. Res. Atmos. , 124 , 664 – 683 , https://doi.org/10.1029/2018JD029055 . 10.1029/2018JD029055 Marion , G. R. , and R. J. Trapp , 2021 : Controls of quasi-linear convective system tornado intensity . J. Atmos. Sci. , 78 , 1189 – 1205 , https://doi.org/10.1175/JAS-D-20-0164.1 . 10.1175/JAS-D-20-0164.1 Markowski , P. M. , and Y. P. Richardson , 2014 : The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations . J. Atmos
horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure . Mon. Wea. Rev. , 143 , 4355 – 4375 , https://doi.org/10.1175/MWR-D-15-0154.1 . Lemon , L. R. , and C. A. Doswell III , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis . Mon. Wea. Rev. , 107 , 1184 – 1197 , https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2 . Lilly , D. K. , 1986 : The structure
horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure . Mon. Wea. Rev. , 143 , 4355 – 4375 , https://doi.org/10.1175/MWR-D-15-0154.1 . Lemon , L. R. , and C. A. Doswell III , 1979 : Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis . Mon. Wea. Rev. , 107 , 1184 – 1197 , https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2 . Lilly , D. K. , 1986 : The structure