Search Results
half-hourly gauge–radar QPE from the Ground Validation Multi-Radar Multi-Sensor (GV-MRMS; Petersen et al. 2020 ) suite of products is used in this study as a high-quality reference to evaluate the satellite QPEs. GV-MRMS builds on the MRMS QPE that is derived from 176 WSR-88D radars and more than 18 000 automatic hourly rain gauges over the contiguous United States and Canada ( Zhang et al. 2016 ). Advanced data integration techniques are used to create 3D reflectivity mosaic grids and
half-hourly gauge–radar QPE from the Ground Validation Multi-Radar Multi-Sensor (GV-MRMS; Petersen et al. 2020 ) suite of products is used in this study as a high-quality reference to evaluate the satellite QPEs. GV-MRMS builds on the MRMS QPE that is derived from 176 WSR-88D radars and more than 18 000 automatic hourly rain gauges over the contiguous United States and Canada ( Zhang et al. 2016 ). Advanced data integration techniques are used to create 3D reflectivity mosaic grids and
distance from the coastline. c. GV-MRMS The evaluation of SPPs requires deriving high-quality reference rainfall datasets at the satellite product pixel spatial and temporal resolution. In this study as a reference dataset the high-resolution, ground-based, radar–rain gauge corrected precipitation dataset GV-MRMS ( Kirstetter et al. 2012 , 2018 ) is used. GV-MRMS builds on MRMS that uses advanced data integration techniques to create high-resolution 3D reflectivity mosaic grids and quantitative
distance from the coastline. c. GV-MRMS The evaluation of SPPs requires deriving high-quality reference rainfall datasets at the satellite product pixel spatial and temporal resolution. In this study as a reference dataset the high-resolution, ground-based, radar–rain gauge corrected precipitation dataset GV-MRMS ( Kirstetter et al. 2012 , 2018 ) is used. GV-MRMS builds on MRMS that uses advanced data integration techniques to create high-resolution 3D reflectivity mosaic grids and quantitative