Search Results
correlated to regional climate conditions. Subsequent versions of GPROF addressed this by constraining the TRMM (ocean only) GPROF retrievals by two environmental parameters, namely total precipitable water (TPW) and sea surface temperature (SST) ( Kummerow et al. 2011 ). Moving forward to GPM, these same techniques were adapted to land surfaces, by replacing the SST with the 2 m air temperature commonly available from forecast and reanalysis models. In a series of papers describing and testing the Cloud
correlated to regional climate conditions. Subsequent versions of GPROF addressed this by constraining the TRMM (ocean only) GPROF retrievals by two environmental parameters, namely total precipitable water (TPW) and sea surface temperature (SST) ( Kummerow et al. 2011 ). Moving forward to GPM, these same techniques were adapted to land surfaces, by replacing the SST with the 2 m air temperature commonly available from forecast and reanalysis models. In a series of papers describing and testing the Cloud
. Combining both direct (gauges) and remote (radar/radiometer) measurement techniques, using ground and in-orbit observations complemented by the state-of-the-art atmosphere simulations, the GPM constellation offers full global coverage of rain and snow every 30 min at a resolution of only 0.1° and a latency of only a few hours. Freely available precipitation products are implemented across a spectrum of decision-making scientific tools, ranging from hydrology to world health. To ensure user demands for
. Combining both direct (gauges) and remote (radar/radiometer) measurement techniques, using ground and in-orbit observations complemented by the state-of-the-art atmosphere simulations, the GPM constellation offers full global coverage of rain and snow every 30 min at a resolution of only 0.1° and a latency of only a few hours. Freely available precipitation products are implemented across a spectrum of decision-making scientific tools, ranging from hydrology to world health. To ensure user demands for
waters, coastlines, and sea ice edge. These classes come from a cluster analysis, purely empirical self-grouping of emissivity characteristics ( Prigent et al. 2006 ). The TPW and T2m parameters are obtained from the Global Atmospheric Analysis (GANAL; JMA 2000 ) and the European Centre for Medium-Range Weather Forecasts ( Dee et al. 2011 ) reanalysis datasets for the operational and the climatological GPROF outputs, respectively. For this study, the 1C-R-GMI product (TBs) and the climatological 2A
waters, coastlines, and sea ice edge. These classes come from a cluster analysis, purely empirical self-grouping of emissivity characteristics ( Prigent et al. 2006 ). The TPW and T2m parameters are obtained from the Global Atmospheric Analysis (GANAL; JMA 2000 ) and the European Centre for Medium-Range Weather Forecasts ( Dee et al. 2011 ) reanalysis datasets for the operational and the climatological GPROF outputs, respectively. For this study, the 1C-R-GMI product (TBs) and the climatological 2A
-1839441. The authors thank Prof. Christian Kummerow, Dr. Dave Randel, and Dr. Wesley Berg from the Precipitation Group at the Colorado State University as well as Dr. Joseph Turk from NASA Jet Propulsion Laboratory for the insightful discussions and shared information which contributed to the present article. APPENDIX A Acronyms AMSR-2 Advanced Microwave Scanning Radiometer 2 CMORPH Climate Prediction Center morphing technique DMSP Defense Meteorological Satellite Program DPR Dual
-1839441. The authors thank Prof. Christian Kummerow, Dr. Dave Randel, and Dr. Wesley Berg from the Precipitation Group at the Colorado State University as well as Dr. Joseph Turk from NASA Jet Propulsion Laboratory for the insightful discussions and shared information which contributed to the present article. APPENDIX A Acronyms AMSR-2 Advanced Microwave Scanning Radiometer 2 CMORPH Climate Prediction Center morphing technique DMSP Defense Meteorological Satellite Program DPR Dual