Search Results

You are looking at 1 - 9 of 9 items for :

  • Forecasting techniques x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • Journal of Hydrometeorology x
  • User-accessible content x
Clear All
Md. Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, and Emmanouil N. Anagnostou

). Another precipitation data source available at the global scale is from atmospheric reanalyses produced by different national and international organizations, including the National Centers for Environmental Prediction (NCEP; Kalnay et al. 1996 ), the European Centre for Medium-Range Weather Forecasts (ECMWF; Uppala et al. 2005 ; Bosilovich et al. 2008 ), and NASA’s Goddard Space Flight Center (GSFC; Rodell et al. 2004 ). These products are affected by irregularly distributed observation stations

Full access
Xinxuan Zhang and Emmanouil N. Anagnostou

corrections of satellite precipitation products. Future research should investigate the feasibility of using real-time weather forecasts to correct near-real-time high-resolution satellite precipitation products (e.g., CMORPH, GSMaP, PERSIANN-CCS, and IMERG) for heavy precipitation events over complex terrain areas and evaluate hydrologic impacts in terms of flood forecasts. Furthermore, a future study should focus on demonstrating the technique on recently released versions of CMORPH and GSMaP and the

Full access
Jiaying Zhang, Liao-Fan Lin, and Rafael L. Bras

al. (2016) revealed that the IMERG product has more skill in representing daily precipitation than the post-real-time Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA-3B42) and the ERA-Interim product from the European Centre for Medium-Range Weather Forecasts (ECMWF) in Iran from March 2014 to February 2015. For the midlatitude region of the Ganjiang River basin in southeast China, Tang et al. (2016b) showed that the detection skill of the Day-1 IMERG

Full access
Jackson Tan, Walter A. Petersen, and Ali Tokay

-top temperatures. Much progress has been made in the last two decades with a contingent of low-Earth-orbiting passive microwave satellites and two NASA/JAXA spaceborne radars in the microwave band, the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission. Unlike infrared radiation, microwave radiation is able to penetrate clouds and interact more directly with precipitation; consequently, microwave retrieval techniques generally provide a superior estimate of

Full access
M. Petracca, L. P. D’Adderio, F. Porcù, G. Vulpiani, S. Sebastianelli, and S. Puca

the Italian operational rain gauge network. To homogenize the two ground datasets, rain gauge data, preprocessed according to range, persistence, step, and spatial consistency ( Shafer et al. 2000 ) to screen out suspect values, have been interpolated over a regular grid (1 km × 1 km) through the Random Generator of Spatial Interpolation from uncertain Observations (GRISO). The GRISO ( Pignone et al. 2010 ; Feidas et al. 2018 ) is an improved kriging-based technique implemented by the

Full access
Zeinab Takbiri, Ardeshir Ebtehaj, Efi Foufoula-Georgiou, Pierre-Emmanuel Kirstetter, and F. Joseph Turk

) developed a statistical approach that partitions high-frequency brightness temperatures (≥89 GHz) into two distinct warm and cold weather regimes by thresholding the brightness temperature at 53 GHz. Another class of empirical approaches relies on Bayesian techniques. These techniques use a database or a lookup table that relates brightness temperatures of snowing clouds to the radar snowfall observations along with the atmospheric temperature profile. As an example, Liu and Seo (2013) used matched

Full access
Kamil Mroz, Mario Montopoli, Alessandro Battaglia, Giulia Panegrossi, Pierre Kirstetter, and Luca Baldini

in the design for the DF and SF products. First, the clutter-free ranges closest to the ground are identified and it is determined whether precipitation reaches the surface. Second, the surface reference technique (SRT) is used to estimate the path-integrated attenuation (PIA) for each frequency due to the propagation through precipitation using the radar returns from the surface ( Meneghini et al. 2000 ). Different variations of the technique are run and a combination of them provides the final

Open access
Veljko Petković, Christian D. Kummerow, David L. Randel, Jeffrey R. Pierce, and John K. Kodros

-changing climate. Despite a long, albeit sparse, record [first known observations date back 2000 BCE ( Wang and Zhang 1988 )], globally complete precipitation measurements did not become available until the modern era of satellite Earth-observing systems that employ infrared and microwave radiometric techniques (e.g., Atlas and Thiele 1981 ). Achieving measurement standards of rainfall in atypical (i.e., extreme) environments on small spatiotemporal scales across the globe, however, has turned out to be more

Full access
Jackson Tan, Walter A. Petersen, Pierre-Emmanuel Kirstetter, and Yudong Tian

), the TRMM Multisatellite Precipitation Analysis (TMPA; Huffman et al. 2007 ), the Climate Prediction Center morphing technique (CMORPH; Joyce et al. 2004 ; Joyce and Xie 2011 ), and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS; Hong et al. 2004 ). These gridded precipitation datasets use a blend of data from various sources with advanced techniques to provide a near-global coverage with high spatial and

Full access