Search Results

You are looking at 1 - 3 of 3 items for :

  • Lidar observations x
  • Corrigendum x
  • Refine by Access: Content accessible to me x
Clear All
A. Protat, J. Delanoë, E. J. O’Connor, and T. S. L’Ecuyer

has been obtained from the 3 yr of Darwin radar–lidar observations used in Protat et al. (2010) . REFERENCES Delanoë, J. , and Hogan R. J. , 2008 : A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer . J. Geophys. Res. , 113 , D07204 , doi:10.1029/2007JD009000 . Protat, A. , Delanoë J. , O’Connor E. , and L’Ecuyer T. , 2010 : The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar

Full access
Shannon Mason, Christian Jakob, Alain Protat, and Julien Delanoë

M2 (23%) and M1 (19%). Fig . 10. Instantaneous cloud structure classes displayed according to (top) atmospheric temperature and (middle) height. The bar represents the distribution of known radar–lidar (DARDAR) cloud phase categories within each cloud structure class. To indicate radar signal contamination near the ground, the lowest 1.50 km of the height profiles are stippled. (bottom) The column chart indicates the relative frequency of occurrence of each cloud structure class within the cloud

Full access
Melissa L. Wrzesien, Michael T. Durand, Tamlin M. Pavelsky, Ian M. Howat, Steven A. Margulis, and Laurie S. Huning

events linked to atmospheric rivers and surface air temperature via satellite measurements . Geophys. Res. Lett. , 37 , L20401 , . 10.1029/2010GL044696 Guan , B. , N. P. Molotch , D. E. Waliser , S. M. Jepsen , T. H. Painter , and J. Dozier , 2013 : Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations . Water Resour. Res. , 49 , 5029 – 5046 , . 10.1002/wrcr

Full access