Search Results

You are looking at 1 - 3 of 3 items for :

  • Microwave observations x
  • 12th International Precipitation Conference (IPC12) x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • User-accessible content x
Clear All
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi

to the five different 10° latitude bins indicated in the legend. The extremely variable snow-cover extent and snow radiative properties in the MW are one of the main issues in the detection and quantification of snowfall by passive microwave observations, which remain among the most challenging tasks in global precipitation retrieval ( Bennartz and Bauer 2003 ; Skofronick-Jackson et al. 2004 , 2019 ; Noh et al. 2009 ; Levizzani et al. 2011 ; Kongoli and Helfrich 2015 ; Chen et al. 2016

Open access
Clément Guilloteau and Efi Foufoula-Georgiou

of orbiting imagers providing frequent observations of clouds and precipitation all over the globe ( Skofronick-Jackson et al. 2018 ). The passive microwave retrieval of precipitation relies on the measurement of radiances at the top of the atmosphere, which are the product of the surface emission, emission and absorption by liquid rain drops and water vapor and scattering by ice particles. Vertically and horizontally polarized radiances are measured at various frequencies between 5 and 200 GHz

Open access
Stephen E. Lang and Wei-Kuo Tao

radiative characteristics to satellite microwave radiometric observations via a Bayesian technique. This approach later evolved into the “trained radiometer” or TRAIN algorithm ( Grecu and Olson 2006 ; Grecu et al. 2009 ) wherein the passive microwave algorithm is “trained” using space-borne radar profiles; those reflectivity profiles are in turn linked to heating profiles from CRM simulations in a manner similar to the SLH algorithm. The hydrometeor heating (HH) algorithm ( Yang and Smith 1999a , b

Full access