Search Results

You are looking at 1 - 3 of 3 items for :

  • Tropical Cyclone Intensity Experiment (TCI) x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
Robert G. Nystrom, Fuqing Zhang, Erin B. Munsell, Scott A. Braun, Jason A. Sippel, Yonghui Weng, and Kerry Emanuel

the northern Atlantic. While Joaquin’s motion slowed in the Bahamas, historic flooding commenced along the eastern coast of the United States when a cutoff low pressure system developed over the southeastern United States and transported moisture from Joaquin into the region. By 1200 UTC 3 October, Joaquin had turned northward and began to track to the northeast, away from the U.S. coast ( Fig. 1e ). The westerly winds in the southern region of the low pressure system located over the southeastern

Full access
Patrick Duran and John Molinari

, respectively; is the saturation mixing ratio; is the total condensate mixing ratio; and is the moist adiabatic lapse rate: where is the latent heat of vaporization and is the specific heat of moist air at constant pressure. In the tropopause layer, , , , and approach zero. In this limiting case, Eq. (1) reduces to where θ is the potential temperature. Equation (1) is the appropriate expression for in moist environments, whereas Eq. (3) applies strictly in the absence of moisture

Full access
Benjamin C. Trabing, Michael M. Bell, and Bonnie R. Brown

atmosphere when including realistic longwave cooling due to the colder cloud-top emission temperature, but increases the local cloud-top cooling rate due to increased radiative flux divergence. The results suggest that the Eliassen framework is more appropriate when seeking to understand the impacts rather than a Carnot engine perspective. The actual maximum intensity of any particular ensemble member is sensitive to small moisture perturbations in the initial conditions, especially in the longwave

Full access