Search Results

You are looking at 1 - 4 of 4 items for :

  • Operational forecasting x
  • Bulletin of the American Meteorological Society x
  • RELAMPAGO-CACTI: High Impact Weather in Subtropical South America x
  • Refine by Access: Content accessible to me x
Clear All
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani de Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam C. Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

this end, University of Illinois (UI), CSU, Universidad de Buenos Aires (UBA), and SMN provided convection-permitting regional and global variable resolution runs over the RELAMPAGO region to supplement global numerical guidance. SMN and Centro de Investigaciones del Mar y la Atmósfera (UBA) implemented a mesoscale ensemble-based data assimilation and forecast system on NCAR’s Cheyenne supercomputer, which fostered the operational implementation of this system at SMN. Since briefings used for

Full access
Matthew R. Kumjian, Rachel Gutierrez, Joshua S. Soderholm, Stephen W. Nesbitt, Paula Maldonado, Lorena Medina Luna, James Marquis, Kevin A. Bowley, Milagros Alvarez Imaz, and Paola Salio

be supercells that form in environments that do not stand out among those associated with more “typical” supercells producing smaller hail. The radar signatures of storms with gargantuan or giant hail often are not particularly noteworthy, either, except perhaps stronger mesocyclonic rotation and divergence aloft. This implies that features commonly used by operational meteorologists to forecast and monitor severe storms may only be subtly different for extreme-hail-producing storms, making

Free access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

used global numerical weather prediction and regional convection-allowing model guidance that was run every 6–12 h by SMN, the University of Illinois, and Colorado State University (CSU). When deep convection was forecasted, AMF1 radiosonde launch frequency was increased from 4- to 3-hourly between 0900 and 2100 LT. Additional sondes were also occasionally launched from the Villa Dolores site. In addition, Geostationary Operational Environmental Satellite-16 ( GOES-16 ) mesoscale domain sectors

Full access
Kristen L. Rasmussen, Melissa A. Burt, Angela Rowe, Rebecca Haacker, Deanna Hence, Lorena Medina Luna, Stephen W. Nesbitt, and Julie Maertens

). During the project, the students attended all RELAMPAGO campaign forecast briefings that occurred daily at 0900 and 1700 local time. In addition to the planned activities, networking with the instrument teams and RELAMPAGO scientists was an opportunity for the students in building their professional networks. To synthesize their field experience, the students gave a short 5-min presentation at the end of the program on the observations they collected and any insights into the science of RELAMPAGO

Full access