Search Results

You are looking at 1 - 10 of 13 items for :

  • Planetary atmospheres x
  • Multi-Scale Dynamics of Gravity Waves (MS-GWaves) x
  • User-accessible content x
Clear All
Sonja Gisinger, Andreas Dörnbrack, Vivien Matthias, James D. Doyle, Stephen D. Eckermann, Benedikt Ehard, Lars Hoffmann, Bernd Kaifler, Christopher G. Kruse, and Markus Rapp

Special Sensor Microwave Imager/Sounder (SSMIS) on operational Defense Meteorological Satellite Program (DMSP) platforms. Additional details are provided in section 2b in Eckermann et al. (2016) . For estimating the planetary wave activity in the stratosphere and mesosphere, temperature and geopotential height from the MLS are analyzed ( Waters et al. 2006 ; Livesey et al. 2017 ). MLS covers Earth’s atmosphere from 82°S to 82°N on each sun-ynchronous sorbit and the data are analyzed between

Full access
Christoph Zülicke, Erich Becker, Vivien Matthias, Dieter H. W. Peters, Hauke Schmidt, Han-Li Liu, Laura de la Torre Ramos, and Daniel M. Mitchell

driving. While the changes of the stratospheric wind from west to east imply changes in the propagation conditions for GWs, leading to a breakdown of dynamic heating in the mesosphere within a few days, the return to winter with stratospheric westerlies leads to enhanced dynamic heating through downwelling during a more extended time. This depends not only on the strength of the perturbation during the peak of the SSW but also on the seasonal and planetary-scale state of the atmosphere. Hence

Full access
David C. Fritts, Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifford P. Williams, P.-Dominique Pautet, Katrina Bossert, Neal R. Criddle, Carolyn A. Reynolds, P. Alex Reinecke, Michael Uddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, Tyler Mixa, Christopher G. Kruse, Alison D. Nugent, Campbell D. Watson, Sonja Gisinger, Steven M. Smith, Ruth S. Lieberman, Brian Laughman, James J. Moore, William O. Brown, Julie A. Haggerty, Alison Rockwell, Gregory J. Stossmeister, Steven F. Williams, Gonzalo Hernandez, Damian J. Murphy, Andrew R. Klekociuk, Iain M. Reid, and Jun Ma

turbulence due to large GW amplitudes and superpositions; 6) energy, momentum, and tracer transports; 7) parameterizations of GW effects in large-scale (LS) models; and 8) GW influences on other processes such as convection, cloud microphysics, chemical reactions, and plasma dynamics and instabilities in the ionosphere. Many other papers have addressed important GW roles in oceans, lakes, other planetary atmospheres, and stellar interiors. PREVIOUS RESEARCH. The scope of GW dynamics and roles is

Full access
Benedikt Ehard, Peggy Achtert, Andreas Dörnbrack, Sonja Gisinger, Jörg Gumbel, Mikhail Khaplanov, Markus Rapp, and Johannes Wagner

;2 . Holton , J. , and M. Alexander , 2000 : The role of waves in the transport circulation of the middle atmosphere . Atmospheric Science across the Stratopause , Geophys. Monogr. , Vol. 123, Amer. Geophys. Union, 21–35 . Hong , S.-Y. , and J.-O. Lim , 2006 : The WRF single-moment 6-class microphysics scheme (WSM6) . J. Korean Meteor. Soc. , 42 , 129 – 151 . Hu , X.-M. , J. Nielsen-Gammon , and F. Zhang , 2010 : Evaluation of three planetary boundary layer schemes in

Full access
Junhong Wei, Gergely Bölöni, and Ulrich Achatz

1. Introduction As one of the most fundamental physical modes in meteorology, gravity waves (GWs) are ubiquitous buoyancy oscillations in the atmosphere. The sources of excited gravity waves include, among others, topographic forcing ( Smith 1980 ; Menchaca and Durran 2017 ), convection ( Alexander et al. 1995 ; Lane et al. 2001 ), the jets ( Zhang 2004 ; Plougonven and Zhang 2014 ; Hien et al. 2018 ), frontal systems ( Snyder et al. 1993 ; Griffiths and Reeder 1996 ), and shear

Full access
Gergely Bölöni, Bruno Ribstein, Jewgenija Muraschko, Christine Sgoff, Junhong Wei, and Ulrich Achatz

-state wave field and background flow, (ii) the neglect of the impact of horizontal large-scale flow gradients on the GWs, and (iii) one-dimensional vertical propagation. Under these conditions, the wave-dissipation or nonacceleration theorem states that GWs can deposit their momentum only where they break. In theoretical analyses of this problem in a rotating atmosphere, Bühler and McIntyre (1999 , 2003 , 2005 ) point out that the steady-state assumption can lead to the neglect of important aspects of

Full access
Markus Rapp, Bernd Kaifler, Andreas Dörnbrack, Sonja Gisinger, Tyler Mixa, Robert Reichert, Natalie Kaifler, Stefanie Knobloch, Ramona Eckert, Norman Wildmann, Andreas Giez, Lukas Krasauskas, Peter Preusse, Markus Geldenhuys, Martin Riese, Wolfgang Woiwode, Felix Friedl-Vallon, Björn-Martin Sinnhuber, Alejandro de la Torre, Peter Alexander, Jose Luis Hormaechea, Diego Janches, Markus Garhammer, Jorge L. Chau, J. Federico Conte, Peter Hoor, and Andreas Engel

aircraft from Christchurch, New Zealand, and involved various ground based instruments, satellite datasets, as well as a variety of numerical models of different complexity ( Fritts et al. 2016 ). DEEPWAVE was also the first comprehensive airborne mission studying GW dynamics up to the mesopause (∼100 km). To mention just a few outstanding results, DEEPWAVE provided insight into the relation between tropospheric forcing and GW activity in the middle atmosphere ( Fritts et al. 2016 , 2018 ; Kaifler et

Open access
Andreas Dörnbrack, Sonja Gisinger, Michael C. Pitts, Lamont R. Poole, and Marion Maturilli

the Arctic stratospheric vortex were unusually cold ( Fig. 3 ). In November–December 2015, the Arctic vortex was minimally disturbed by upward-propagating planetary waves ( Matthias et al. 2016 ) and the polar cap minimum temperature T MIN between 65° and 90°N dropped well below the climatological mean. The red T MIN line in Fig. 3 reveals that the threshold of T NAT at 50 hPa was already reached at the beginning of December 2015, and T MIN dropped below T FROST at the end of 2015

Full access
Jannik Wilhelm, T. R. Akylas, Gergely Bölöni, Junhong Wei, Bruno Ribstein, Rupert Klein, and Ulrich Achatz

1. Introduction Internal gravity waves (GWs) play a significant role in atmospheric dynamics on various spatial scales ( Fritts and Alexander 2003 ; Kim et al. 2003 ; Alexander et al. 2010 ; Plougonven and Zhang 2014 ). Already in the lower atmosphere GW effects are manifold. Examples include the triggering of high-impact weather (e.g., Zhang et al. 2001 , 2003 ) and clear-air turbulence ( Koch et al. 2005 ), as well as the effect of small-scale GWs of orographic origin on the predicted

Full access
Claudia Christine Stephan, Cornelia Strube, Daniel Klocke, Manfred Ern, Lars Hoffmann, Peter Preusse, and Hauke Schmidt

1. Introduction Atmospheric gravity waves (GWs) play a key role in defining the large-scale global circulation and thermal structure of the middle and upper atmosphere, and they are important drivers of global atmospheric variability on various time scales. They are the main driver of the mesospheric summer to winter pole-to-pole circulation ( Holton 1982 , 1983 ) and the reason for the cold summer mesopause ( Björn 1984 ). In the stratosphere, GWs affect the timing of the springtime

Open access