Search Results

You are looking at 1 - 10 of 457 items for :

  • Regional effects x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All
John H. Seinfeld, Gregory R. Carmichael, Richard Arimoto, William C. Conant, Frederick J. Brechtel, Timothy S. Bates, Thomas A. Cahill, Antony D. Clarke, Sarah J. Doherty, Piotr J. Flatau, Barry J. Huebert, Jiyoung Kim, Krzysztof M. Markowicz, Patricia K. Quinn, Lynn M. Russell, Philip B. Russell, Atsushi Shimizu, Yohei Shinozuka, Chul H. Song, Youhua Tang, Itsushi Uno, Andrew M. Vogelmann, Rodney J. Weber, Jung-Hun Woo, and Xiao Y. Zhang

Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.

Full access
Marina Baldissera Pacchetti, Suraje Dessai, Seamus Bradley, and David A. Stainforth

scientific information differently in the decision-making process ( Dessai and van der Sluijs 2007 ). Nevertheless, whenever scientific climate information is used in adaptation, “quality” is considered to be an essential characteristic that this information should have (e.g., Lu 2011 ; Wilby et al. 2009 ; for a general overview on quality of science for policy, see Funtowicz and Ravetz 1990 ). The kind of long-term regional climate information that is increasingly important for decision-makers (see

Open access
Jinyuan Xin, Yuesi Wang, Yuepeng Pan, Dongsheng Ji, Zirui Liu, Tianxue Wen, Yinghong Wang, Xingru Li, Yang Sun, Jie Sun, Pucai Wang, Gehui Wang, Xinming Wang, Zhiyuan Cong, Tao Song, Bo Hu, Lili Wang, Guiqian Tang, Wenkang Gao, Yuhong Guo, Hongyan Miao, Shili Tian, and Lu Wang

play an important role in global and regional climate change through direct and indirect effects. The direct effects influence the radiation and energy budget of Earth, mainly by absorbing and scattering solar and terrestrial radiation ( Dubovik et al. 2002 ; Menon 2004 ). The indirect effects, however, are more complicated. Aerosols can act as cloud condensation nuclei (CCN), thereby participating in the process of cloud formation, evolution, and dissipation, which changes the microphysical

Full access
Simone Tilmes, Jadwiga H. Richter, Ben Kravitz, Douglas G. MacMartin, Michael J. Mills, Isla R. Simpson, Anne S. Glanville, John T. Fasullo, Adam S. Phillips, Jean-Francois Lamarque, Joseph Tribbia, Jim Edwards, Sheri Mickelson, and Siddhartha Ghosh

An overview is presented of the GLENS project, a community-wide effort enabling analyses of global and regional changes from stratospheric aerosol geoengineering in the presence of internal climate variability. Solar geoengineering using stratospheric sulfate aerosols has been discussed as a potential means of deliberately offsetting some of the effects of climate change ( Crutzen 2006 ). Various model studies have demonstrated that reducing incoming solar radiation globally can offset the

Open access
C. R. Mechoso, R. Wood, R. Weller, C. S. Bretherton, A. D. Clarke, H. Coe, C. Fairall, J. T. Farrar, G. Feingold, R. Garreaud, C. Grados, J. McWilliams, S. P. de Szoeke, S. E. Yuter, and P. Zuidema

scales. The SEP is very important in many ways. The region produces nearly a fifth of the global fish catch ( Sherman and Hempel 2008 ), and variations in its climate can have global reach through teleconnections and aerosol indirect effects. The SEP is characterized by strong coastal ocean upwelling, the coldest sea surface temperatures (SSTs) at comparable latitudes, the planet's most extensive subtropical stratocumulus deck, and a high and steep cordillera to the east ( Fig. 1 ). The regional

Full access
Catherine A. Senior, John H. Marsham, Ségolène Berthou, Laura E. Burgin, Sonja S. Folwell, Elizabeth J. Kendon, Cornelia M. Klein, Richard G. Jones, Neha Mittal, David P. Rowell, Lorenzo Tomassini, Théo Vischel, Bernd Becker, Cathryn E. Birch, Julia Crook, Andrew J. Dougill, Declan L. Finney, Richard J. Graham, Neil C. G. Hart, Christopher D. Jack, Lawrence S. Jackson, Rachel James, Bettina Koelle, Herbert Misiani, Brenda Mwalukanga, Douglas J. Parker, Rachel A. Stratton, Christopher M. Taylor, Simon O. Tucker, Caroline M. Wainwright, Richard Washington, and Martin R. Willet

features, particularly tropical convection or “storm” cells. Research studies and weather forecasting over Africa have made use of models that explicitly capture convection for some years (see the “Science discoveries” section). However, in the global and regional models commonly used to inform adaptation, such as from the Coupled Model Intercomparison Project (CMIP) or Coordinated Regional Climate Downscaling Experiment (CORDEX), only the bulk effects of convection over the model grid scale (typically

Full access
Ping Zhao, Xiangde Xu, Fei Chen, Xueliang Guo, Xiangdong Zheng, Liping Liu, Yang Hong, Yueqing Li, Zuo La, Hao Peng, Linzhi Zhong, Yaoming Ma, Shihao Tang, Yimin Liu, Huizhi Liu, Yaohui Li, Qiang Zhang, Zeyong Hu, Jihua Sun, Shengjun Zhang, Lixin Dong, Hezhen Zhang, Yang Zhao, Xiaolu Yan, An Xiao, Wei Wan, Yu Liu, Junming Chen, Ge Liu, Yangzong Zhaxi, and Xiuji Zhou

Integrated monitoring systems for the land surface, boundary layer, troposphere, and lower stratosphere over the Tibetan Plateau promote the understanding of the Earth–atmosphere coupled processes and their effects on weather and climate. The Tibetan Plateau (TP), known as the “sensible heat pump” and the “atmospheric water tower,” modifies monsoon circulations and regional energy and water cycles over Asia ( Wu and Zhang 1998 ; Zhao and Chen 2001a ; Wu et al. 2007 ; Xu et al. 2008b ; Zhou

Open access
S. Gualdi, S. Somot, L. Li, V. Artale, M. Adani, A. Bellucci, A. Braun, S. Calmanti, A. Carillo, A. Dell'Aquila, M. Déqué, C. Dubois, A. Elizalde, A. Harzallah, D. Jacob, B. L'Hévéder, W. May, P. Oddo, P. Ruti, A. Sanna, G. Sannino, E. Scoccimarro, F. Sevault, and A. Navarra

possible changes that anthropogenic global warming might induce in the climate of the European continent and of the Mediterranean region. Specifically, scenario simulations aimed at quantifying the possible future climate change in the European and Mediterranean region have been designed and performed in the framework of European Union (EU) projects such as the Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE; Christensen et al. 2007

Full access
Mitchell W. Moncrieff, Duane E. Waliser, Martin J. Miller, Melvyn A. Shapiro, Ghassem R. Asrar, and James Caughey

transported upward into the atmosphere. From there, the heat is radiated back to space and the moisture may condense and form clouds. Some of the condensate grows large enough to fall back to Earth's surface as precipitation. In this regard, moist convection plays a crucial role in the energy and water cycles of the tropics as well as the variability of the tropical climate system. In concert with its effects on the tropics per se, moist convection can generate planetary (Rossby) waves, which affect

Full access
J. L. Kinter III, B. Cash, D. Achuthavarier, J. Adams, E. Altshuler, P. Dirmeyer, B. Doty, B. Huang, E. K. Jin, L. Marx, J. Manganello, C. Stan, T. Wakefield, T. Palmer, M. Hamrud, T. Jung, M. Miller, P. Towers, N. Wedi, M. Satoh, H. Tomita, C. Kodama, T. Nasuno, K. Oouchi, Y. Yamada, H. Taniguchi, P. Andrews, T. Baer, M. Ezell, C. Halloy, D. John, B. Loftis, R. Mohr, and K. Wong

mitigate the impacts of and successfully adapt to a changing climate will require the investment of trillions of dollars worldwide over the next several decades. In order for these investments to be made efficiently and effectively, accurate predictions of changes in both the mean climate and the frequency of extreme events will be required at the regional level. However, state-of-the-art climate models cannot accurately predict regional climate variations, due largely to their relatively coarse

Full access