Search Results
and Roberts 2006 ; Koch et al. 2008a , b ; Tanamachi et al. 2008 ; Martin and Johnson 2008 ; Hartung et al. 2010 ; Marsham et al. 2011 ; Blake et al. 2017 ). These results are expected as Haghi et al. (2017) revealed that the interaction between the convectively generated cold pools and the SBL over this region typically resides in a partially blocked flow regime where bores will be generated ( Rottman and Simpson 1989 ). These bores will be long lived as the wave energy is typically
and Roberts 2006 ; Koch et al. 2008a , b ; Tanamachi et al. 2008 ; Martin and Johnson 2008 ; Hartung et al. 2010 ; Marsham et al. 2011 ; Blake et al. 2017 ). These results are expected as Haghi et al. (2017) revealed that the interaction between the convectively generated cold pools and the SBL over this region typically resides in a partially blocked flow regime where bores will be generated ( Rottman and Simpson 1989 ). These bores will be long lived as the wave energy is typically
finding was supported by observational analysis utilizing surface meteorological observations and radar “fine lines” that revealed that most convective outflows generated bores. Our investigation utilizes data also taken from IHOP_2002 to explore the vertical structure of bores and their potential to initiate and maintain deep convection. A key finding of this study that was not expected from hydraulic and linear wave theory of bores was that additional wave disturbances extend over the lower
finding was supported by observational analysis utilizing surface meteorological observations and radar “fine lines” that revealed that most convective outflows generated bores. Our investigation utilizes data also taken from IHOP_2002 to explore the vertical structure of bores and their potential to initiate and maintain deep convection. A key finding of this study that was not expected from hydraulic and linear wave theory of bores was that additional wave disturbances extend over the lower
deep-tropospheric gravity waves (e.g., Uccelini 1975 ; Koch et al. 1988 ; Fovell et al. 2006 ; Marsham and Parker 2006 ); cold fronts, density currents, and drylines (e.g., Charba 1974 ; Wilson and Schreiber 1986 ; Mahoney 1988 ; Weckwerth and Wakimoto 1992 ; Hane et al. 1993 ; Ziegler and Rasmussen 1998 ; Weiss and Bluestein 2002 ; Geerts et al. 2006 ; Weckwerth et al. 2008 ); inland or “vegetation” breezes (e.g., Sun and Ogura 1979 ; Mahfouf et al. 1987 ; Segal and Arritt 1992
deep-tropospheric gravity waves (e.g., Uccelini 1975 ; Koch et al. 1988 ; Fovell et al. 2006 ; Marsham and Parker 2006 ); cold fronts, density currents, and drylines (e.g., Charba 1974 ; Wilson and Schreiber 1986 ; Mahoney 1988 ; Weckwerth and Wakimoto 1992 ; Hane et al. 1993 ; Ziegler and Rasmussen 1998 ; Weiss and Bluestein 2002 ; Geerts et al. 2006 ; Weckwerth et al. 2008 ); inland or “vegetation” breezes (e.g., Sun and Ogura 1979 ; Mahfouf et al. 1987 ; Segal and Arritt 1992
-scale environment favorable for storm formation and maintenance. Data from the North American Regional Reanalysis (NARR) reanalysis at 1800 UTC 1 July 2015 are presented to highlight characteristics of the synoptic-scale condition ( Fig. 2 ). The storm formed east of the short-wave trough located in Nebraska ( Fig. 2a ). The 500 hPa winds exhibit a strong jet stream and upper-level disturbance over Kansas. A surface stationary front stretched from Pennsylvania to a broad region of low pressure in Kansas ( Fig
-scale environment favorable for storm formation and maintenance. Data from the North American Regional Reanalysis (NARR) reanalysis at 1800 UTC 1 July 2015 are presented to highlight characteristics of the synoptic-scale condition ( Fig. 2 ). The storm formed east of the short-wave trough located in Nebraska ( Fig. 2a ). The 500 hPa winds exhibit a strong jet stream and upper-level disturbance over Kansas. A surface stationary front stretched from Pennsylvania to a broad region of low pressure in Kansas ( Fig