Search Results

You are looking at 91 - 100 of 134 items for

  • Author or Editor: Yao Yao x
  • All content x
Clear All Modify Search
R. W. Higgins, Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo

Abstract

The influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO. Intercomparisons between the assimilated datasets and comparisons with station observations of precipitation, winds, and specific humidity are used to evaluate the limitations of the assimilated products for studying the diurnal cycle of rainfall and the Great Plains LLJ. The winds from the reanalyses are used to diagnose the impact of the LLJ on observed nocturnal precipitation and moisture transport over a multisummer (JJA 1985–89) period. The impact of the LLJ on the overall moisture budget of the central United States is also examined.

An inspection of the diurnal cycle of precipitation in gridded hourly station observations for 1963–93 reveals a well-defined nocturnal maximum over the Great Plains region during the spring and summer months consistent with earlier observational studies. During summer in excess of 25% more precipitation falls during the nighttime hours than during the daytime hours over a large portion of the Great Plains, with a commensurate decrease in the percentage amount of nocturnal precipitation along the Gulf Coast. Inspection of the nighttime precipitation by month shows that the maximum in precipitation along the Gulf Coast slowly shifts northward from the lower Mississippi Valley to the upper Midwest during the late spring and summer months and then back again during the fall.

Both reanalyses produce a Great Plains LLJ with a structure, diurnal cycle, and frequency of occurrence that compares favorably to hourly wind profiler data. Composites of observed nighttime rainfall during LLJ events show a fundamentally different pattern in the distribution of precipitation compared to nonjet events. Overall, LLJ events are associated with enhanced precipitation over the north central United States and Great Plains and decreased precipitation along the Gulf Coast and East Coast; nonjet events are associated with much weaker anomalies that are generally in the opposite sense. Inspection of the LLJ composites for each month shows a gradual shift of the region of enhanced precipitation from the northern tier of states toward the south and east in a manner consistent with the anomalous moisture transport. LLJ-related precipitation is found to be associated most closely with the strongest, least frequent LLJ events.

The moisture transport in the reanalyses compares favorably to radiosonde data, although significant regional differences exist, particularly along the Gulf Coast during summer. The diurnal cycle of the low-level moisture transport is well resolved in the reanalyses with the largest and most extensive anomalies being those associated with the nocturnal inland flow of the Great Plains LLJ. Examination of the impact of the LLJ on the nighttime moisture transport shows a coherent evolution from May to August with a gradual increase in the anomalous westerly transport over the southeastern United States, consistent with the evolution of the precipitation patterns. The impact of the LLJ on the overall moisture budget during summer is considerable with low-level inflow from the Gulf of Mexico increasing by more than 45%, on average, over nocturnal mean values.

Full access
Dong-Peng Guo, Peng Zhao, Ren-Tai Yao, Yun-Peng Li, Ji-Min Hu, and Dan Fan

Abstract

In this paper, the kε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.

Free access
Shizuo Liu, Qigang Wu, Xuejuan Ren, Yonghong Yao, Steven R. Schroeder, and Haibo Hu

Abstract

Observational studies link a persistent dipole of autumn and winter snow cover anomalies over the Tibetan Plateau (TP) and Mongolia with winter Pacific–North American (PNA)-like atmospheric variations. This study investigates atmospheric responses to such snow forcings using multiple ensemble transient integrations of the CAM4 and CLM4.0 models. Model boundary conditions are based on climatological sea ice extent and sea surface temperature, and satellite observations of snow cover extent (SCE) and snow water equivalent (SWE) over the TP and Mongolia from October to March in 1997/98 (heavy TP and light Mongolia snow) and 1984/85 (light TP and heavy Mongolia snow), with model-derived SCE and SWE elsewhere. In various forcing experiments, the ensemble-mean difference between simulations with these two extreme snow states identifies local, distant, concurrent, and delayed climatic responses. The main atmospheric responses to a dipole of high TP and low Mongolia SCE persisting from October to March (versus the opposite extreme) are strong TP surface cooling, warming in the surrounding China and Mongolia region, and a winter positive PNA-like response. The localized response is maintained by persistent diabatic cooling or heating, and the remote PNA response results mainly from the increased horizontal eastward propagation of stationary Rossby wave energy due to persistent TP snow forcing and also a winter transient eddy feedback mechanism. With a less persistent dipole anomaly in autumn or winter only, local responses are similar depending on the specific anomalies, but the winter PNA-like response is nearly absent or noticeably reduced.

Full access
George Tselioudis, Anthony D. DelGenio, William Kovari Jr., and Mao-Sung Yao

Abstract

A current-climate simulation of the Goddard Institute for Space Studies (GISS) GCM, which includes interactive cloud optical properties that depend on the predicted cloud water content, is analyzed to document the variations of low cloud optical thickness with temperature in the model atmosphere. It is found that low cloud optical thickness decreases with temperature in the warm subtropical and tropical latitudes and increases with temperature in the cold midlatitude regions. This behavior is in agreement with the results of two observational studies that analyzed satellite data from the International Satellite Cloud Climatology Project and Special Sensor Microwave/Imager datasets. The increase of low cloud optical thickness with temperature in the midlatitudes is due to vertical extent and cloud water increases, whereas the decrease with temperature in the warm latitudes is due to decreases in cloud water content and happens despite increases in cloud vertical extent. The cloud processes that produce the cloud property changes in the model also vary with latitude. In the midlatitude regions relative-humidity-induced increases of cloud vertical extent with temperature dominate, whereas in the Tropics increases in cloud-top entrainment and precipitation with temperature produce decreases of cloud water content, whose effect on optical thickness outweighs the effect of entrainment-induced increases of cloud vertical extent with temperature. Doubled-CO2 simulations with the GISS GCM suggest that even though low cloud optical thickness changes have little effect on the global climate sensitivity of the model, they redistribute the temperature change and reduce the high-latitude amplification of the greenhouse warming. It is also found that the current-climate variations of low cloud optical thickness with temperature reproduce qualitatively but overestimate quantitatively the changes in optical thickness with climate warming.

Full access
Anthony D. Del Genio, Yonghua Chen, Daehyun Kim, and Mao-Sung Yao
Full access
Shiyuan Zhong, Ju Li, C. David Whiteman, Xindi Bian, and Wenqing Yao

Abstract

The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with the North American Regional Reanalysis dataset. Potential mechanisms for the development of strong winds in the valley are examined.

Contrary to the common belief that strong winds in the Owens Valley are westerly downslope windstorms that develop on the eastern slope of the Sierra Nevada, strong westerly winds are rare in the valley. Instead, strong winds are highly bidirectional, blowing either up (northward) or down (southward) the valley axis. High wind events are most frequent in spring and early fall and they occur more often during daytime than during nighttime, with a peak frequency in the afternoon. Unlike thermally driven valley winds that blow up valley during daytime and down valley during nighttime, strong winds may blow in either direction regardless of the time of the day. The southerly up-valley winds appear most often in the afternoon, a time when there is a weak minimum of northerly down-valley winds, indicating that strong wind events are modulated by local along-valley thermal forcing.

Several mechanisms, including downward momentum transfer, forced channeling, and pressure-driven channeling all play a role in the development of southerly high wind events. These events are typically accompanied by strong south-southwesterly synoptic winds ahead of an upper-level trough off the California coast. The northerly high wind events, which typically occur when winds aloft are from the northwest ahead of an approaching upper-level ridge, are predominantly caused by the passage of a cold front when fast-moving cold air behind the surface front undercuts and displaces the warmer air in the valley. Forced channeling by the sidewalls of the relatively narrow valley aligns the wind direction with the valley axis and enhances the wind speeds.

Full access
Lei Wang, Zhi-Jun Yao, Li-Guang Jiang, Rui Wang, Shan-Shan Wu, and Zhao-Fei Liu

Abstract

The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods, and snowstorms, were also investigated for the same period. The correlations between catastrophic events and the extreme indices were examined. The results show that the Mongolian Plateau experienced an asymmetric warming trend. Both the cold extremes and warm extremes showed greater warming at night than in the daytime. The spatial changes in significant trends showed a good homogeneity and consistency in Inner Mongolia. Changes in the precipitation extremes were not as obvious as those in the temperature extremes. The spatial distributions in changes of precipitation extremes were complex. A decreasing trend was shown for total precipitation from west to east as based on the spatial distribution of decadal trends. Drought was the most serious extreme disaster, and prolonged drought for longer than 3 yr occurred about every 7–11 yr. An increasing trend in the disaster area was apparent for flood events from 1951 to 2012. A decreasing trend was observed for the maximum depth of snowfall from 1951 to 2012, with a decreased average maximum depth of 10 mm from the 1990s.

Full access
Jing Gao, V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann

Abstract

Measurements of precipitation isotopic composition have been conducted on a daily basis for 1 yr at Bomi, in the southeast Tibetan Plateau, an area affected by the interaction of the southwest monsoon, the westerlies, and Tibetan high pressure systems, as well as at Lhasa, situated west of Bomi. The measured isotope signals are analyzed both on an event basis and on a seasonal scale using available meteorological information and airmass trajectories. The processes driving daily and seasonal isotopic variability are investigated using multidecadal climate simulations forced by twentieth-century boundary conditions and conducted with two different isotopic atmospheric general circulation models [the isotopic version of the Laboratoire de Météorologie Dynamique GCM (LMDZiso) and the ECHAM4iso model]. Both models use specific nudging techniques to mimic observed atmospheric circulation fields. The models simulate a wet and cold bias on the Tibetan Plateau together with a dry bias in its southern part. A zoomed LMDZ simulation conducted with ~50-km local spatial resolution dramatically improves the simulation of isotopic compositions of precipitation on the Tibetan Plateau. Simulated water isotope fields are compared with new data and with previous observations, and regional differences in moisture origins are analyzed using back-trajectories. Here, the focus is on relationships between the water isotopes and climate variables on an event and seasonal scale and in terms of spatial and altitudinal isotopic gradients. Enhancing the spatial resolution is crucial for improving the simulation of the precipitation isotopic composition.

Full access
Jeng-Lin Tsai, Ben-Jei Tsuang, Po-Sheng Lu, Ming-Hwi Yao, and Yuan Shen

Abstract

Many meteorological and air-quality models require land characteristics as inputs. A field experiment was conducted to study the surface energy budget of a rice paddy in Taiwan. During the day, the energy balance ratio measured by an eddy covariance (EC) system was found to be 95% after considering the photosynthetic and local advected heat fluxes. The observations by the EC system suggest that the Bowen ratio was about 0.18 during the daytime. The EC system also measured the daytime absorbed carbon dioxide flux. The equivalent photosynthetic energy flux was about 1% of the net solar radiation. A reference table describing the land characteristics of rice paddies for use in meteorological and air-quality models is listed that shows that the albedo and the Bowen ratio measured over rice paddies were lower than those listed in many state-of-the-art models. This study proposes simulating latent heat flux by assigning proper values for canopy resistance rather than by assigning constant values for Bowen ratio or surface moisture availability. The diurnal pattern of the canopy resistance of the rice paddy was found to be “U” shaped. Daytime canopy resistance was observed to be 87 s m−1, and a high canopy resistance (∼900 s m−1) should be assigned during nighttime periods.

Full access
Andrea I. Flossmann, Michael Manton, Ali Abshaev, Roelof Bruintjes, Masataka Murakami, Thara Prabhakaran, and Zhanyu Yao

Abstract

This paper provides a summary of the assessment report of the World Meteorological Organization (WMO) Expert Team on Weather Modification that discusses recent progress on precipitation enhancement research. The progress has been underpinned by advances in our understanding of cloud processes and interactions between clouds and their environment, which, in turn, have been enabled by substantial developments in technical capabilities to both observe and simulate clouds from the microphysical to the mesoscale. We focus on the two cloud types most commonly seeded in the past: winter orographic cloud systems and convective cloud systems. A key issue for cloud seeding is the extension from cloud-scale research to water catchment–scale impacts on precipitation on the ground. Consequently, the requirements for the design, implementation, and evaluation of a catchment-scale precipitation enhancement campaign are discussed. The paper concludes by indicating the most important gaps in our knowledge. Some recommendations regarding the most urgent research topics are given to stimulate further research.

Open access