Search Results

You are looking at 91 - 96 of 96 items for

  • Author or Editor: Zhengyu Liu x
  • All content x
Clear All Modify Search
Xiaodong Liu, Zhengyu Liu, John E. Kutzbach, Steven C. Clemens, and Warren L. Prell

Abstract

Insolation forcing related to the earth’s orbital parameters is known to play an important role in regulating variations of the South Asian monsoon on geological time scales. The influence of insolation forcing on the Indian Ocean and Asian monsoon is studied in this paper by isolating the Northern and Southern Hemispheric insolation changes in several numerical experiments with a coupled ocean–atmosphere model. The focus is on the response of South Asian summer rainfall (monsoon strength) with emphasis on impacts of the local versus remote forcing and possible mechanisms. The model results show that both Northern Hemisphere (NH) and Southern Hemisphere (SH) summer insolation changes affect the Indian Ocean and Asian monsoon as a local forcing (in the same hemisphere), but only the SH changes result in remote (in the other hemisphere) forcing. The NH insolation change has a local and immediate impact on NH summer monsoons from North Africa to South and East Asia, while the SH insolation change has a remote and seasonal-scale delayed effect on the South Asian summer monsoon rainfall. When the SH insolation is increased from December to April, the sea surface temperature (SST) in the southern tropical Indian Ocean remains high from January to July. The increased SST produces more atmospheric precipitable water over the southern tropical Indian Ocean by promoting evaporation from the ocean. The enhanced precipitable water over the southern Indian Ocean is transported northward to the South Asian monsoon region by the lower-tropospheric mean cross-equatorial flows with the onset of the Asian monsoon increasing precipitable water over South Asia, eventually leading to the increase of Indian summer monsoon precipitation. Thus, these model experiments, while idealized and not fully representing actual orbitally forced insolation changes, confirm the broadscale response of northern monsoons to NH summer insolation increases and also illustrate how SH summer insolation increases can have a delayed influence on the Indian summer monsoon.

Full access
Shan Li, Shaoqing Zhang, Zhengyu Liu, Xiaosong Yang, Anthony Rosati, Jean-Christophe Golaz, and Ming Zhao

Abstract

Uncertainty in cumulus convection parameterization is one of the most important causes of model climate drift through interactions between large-scale background and local convection that use empirically set parameters. Without addressing the large-scale feedback, the calibrated parameter values within a convection scheme are usually not optimal for a climate model. This study first designs a multiple-column atmospheric model that includes large-scale feedbacks for cumulus convection and then explores the role of large-scale feedbacks in cumulus convection parameter estimation using an ensemble filter. The performance of convection parameter estimation with or without the presence of large-scale feedback is examined. It is found that including large-scale feedbacks in cumulus convection parameter estimation can significantly improve the estimation quality. This is because large-scale feedbacks help transform local convection uncertainties into global climate sensitivities, and including these feedbacks enhances the statistical representation of the relationship between parameters and state variables. The results of this study provide insights for further understanding of climate drift induced from imperfect cumulus convection parameterization, which may help improve climate modeling.

Full access
Juan Feng, Jianping Li, Feifei Jin, Zhengyu Liu, Xing Nan, and Yipeng Guo

Abstract

The impacts of different meridional structures of tropical sea surface temperature (SST) on the Hadley circulation (HC) in the annual mean are investigated during the period 1948–2013. By decomposing the variations in SST and the HC into two components—that is, the equatorially asymmetric (SEA for SST, and HEA for HC) and the equatorially symmetric (SES for SST, and HES for HC) parts—it is shown that the long-term variability in SEA and SES captures well the temporal variations in equatorially asymmetric and symmetric variations in SST. The variation in HEA is closely linked to that of SEA, and the variation in HES is connected with that of SES. However, the response of HEA to a given amplitude variation in SEA is stronger (by ~5 times) than that of HES to the same amplitude variation in SES. This point is further verified by theoretical and numerical models, indicating that the meridional structure of SST plays a crucial role in determining the anomalies in HC. This result may explain why the principal mode of HC is dominated by an equatorially asymmetric mode in its long-term variability.

Full access
Larissa Back, Karen Russ, Zhengyu Liu, Kuniaki Inoue, Jiaxu Zhang, and Bette Otto-Bliesner

Abstract

This study analyzes the response of global water vapor to global warming in a series of fully coupled climate model simulations. The authors find that a roughly 7% K−1 rate of increase of water vapor with global surface temperature is robust only for rapid anthropogenic-like climate change. For slower warming that occurred naturally in the past, the Southern Ocean has time to equilibrate, producing a different pattern of surface warming, so that water vapor increases at only 4.2% K−1. This lower rate of increase of water vapor with warming is not due to relative humidity changes or differences in mean lower-tropospheric temperature. A temperature of over 80°C would be required in the Clausius–Clapeyron relationship to match the 4.2% K−1 rate of increase. Instead, the low rate of increase is due to spatially heterogeneous warming. During slower global warming, there is enhanced warming at southern high latitudes, and hence less warming in the tropics per kelvin of global surface temperature increase. This leads to a smaller global water vapor increase, because most of the atmospheric water vapor is in the tropics. A formula is proposed that applies to general warming scenarios. This study also examines the response of global-mean precipitation and the meridional profile of precipitation minus evaporation and compares the latter to thermodynamic scalings. It is found that global-mean precipitation changes are remarkably robust between rapid and slow warming. Thermodynamic scalings for the rapid- and slow-warming zonal-mean precipitation are similar, but the precipitation changes are significantly different, suggesting that circulation changes are important in driving these differences.

Full access
Michael Notaro, Zhengyu Liu, Robert Gallimore, Stephen J. Vavrus, John E. Kutzbach, I. Colin Prentice, and Robert L. Jacob

Abstract

Rising levels of carbon dioxide since the preindustrial era have likely contributed to an observed warming of the global surface, and observations show global greening and an expansion of boreal forests. This study reproduces observed climate and vegetation trends associated with rising CO2 using a fully coupled atmosphere–ocean–land surface GCM with dynamic vegetation and decomposes the effects into physiological and radiative components. The simulated warming trend, strongest at high latitudes, was dominated by the radiative effect, although the physiological effect of CO2 on vegetation (CO2 fertilization) contributed to significant wintertime warming over northern Europe and central and eastern Asia. The net global greening of the model was primarily due to the physiological effect of increasing CO2, while the radiative and physiological effects combined to produce a poleward expansion of the boreal forests. Observed and simulated trends in tree ring width are consistent with the enhancement of vegetation growth by the physiological effect of rising CO2.

Full access
Arthur J. Miller, Michael A. Alexander, George J. Boer, Fei Chai, Ken Denman, David J. Erickson III, Robert Frouin, Albert J. Gabric, Edward A. Laws, Marlon R. Lewis, Zhengyu Liu, Ragu Murtugudde, Shoichiro Nakamoto, Douglas J. Neilson, Joel R. Norris, J. Carter Ohlmann, R. Ian Perry, Niklas Schneider, Karen M. Shell, and Axel Timmermann
Full access