Search Results

You are looking at 11 - 20 of 23 items for

  • Author or Editor: B. Ward x
  • All content x
Clear All Modify Search
D. B. O'Sullivan, B. M. Herman, D. Feng, D. E. Flittner, and D. M. Ward

Present Global Positioning System Meteorology (GPS/MET) refractivity profiles cannot distinguish between refractivity effects due to water vapor and those due to air density. Current methods of resolving the ambiguity rely heavily on ancillary upper-air data, such as National Centers for Environmental Prediction and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. However, the accuracy of these ancillary sources suffers in regions where upper-air data are sparse. A method of separating the water vapor and temperature effects in GPS/MET-derived refractivity profiles with the addition of only ancillary surface pressure and temperature data and the hydrostatic assumption is discussed. Water vapor and temperature data derived from this method are presented and compared with accepted values. This method allows for the construction of temperature profiles with a mean bias of 0.33 K and a mean standard deviation of 1.86 K when compared with ECMWF data from 30 to 1000 mb. Height fields can also be corrected to within an average bias of 6 m and a standard deviation of 31 m. These corrected profiles result in retrieved water vapor pressure profiles with an average bias of 0.19 mb and a standard deviation of 0.53 mb.

Full access
Brian J. Thompson, Georgy B. Parrent, John H. Ward, and Bruce Justii

Abstract

Recently a new instrument termed the laser fog disdrometer was introduced by Silverman, Thompson and Ward. As implied by the name, the function of the instrument is the determination of the size distribution of fog droplets. In design, operation and analysis this instrument represents a significant departure from the customary approaches to the problem. The basic principle of the instrument may be summarized as follows: by suitably storing the diffraction pattern associated with a droplet, both the precise size and location of the droplet may be determined. This principle can be utilized to obtain size distributions without disturbing the statistics of the sample, i.e., finite volumes may be sampled without dilution.

Originally, the data were read directly from the diffraction pattern. This type of readout is subject to two fundamental difficulties: 1) the geometry of droplets is difficult to ascertain except for simple structures; 2) if several droplets are relatively near each other in the sample volume, the resultant diffraction pattern is difficult to interpret. This first consideration does not represent a severe limitation for this application; however, it would be a serious limitation in other applications where non-spherical droplets exist. Both of these restrictions, however, are removed by the present readout technique. Physically, the new readout is based on the realization that the diffraction patterns stored by the instrument are, in fact, a new kind of hologram. Hence, the stored diffraction pattern can be used to create a real three-dimensional image of the sample volume. Since the image is fixed in time, the volume may be explored at will and the size and shape of each particle as well as its position relative to the other particles in the sample may be determined. In the present paper the concept and design of the disdrometer is reviewed and the new readout technique is discussed from both a theoretical and experimental point of view. Typical experimental results are also illustrated.

Full access
E. R. Kursinski, S. Syndergaard, D. Flittner, D. Feng, G. Hajj, B. Herman, D. Ward, and T. Yunck

Abstract

A new remote sensing concept extrapolated from the GPS occultation concept is presented in which the signal frequencies are chosen to determine atmospheric water, temperature, and the geopotential of atmospheric pressure surfaces. Using frequencies near the 22- and 183-GHz water lines allows not only the speed of light to be derived as a GPS occultation but also derivation of profiles of absorption caused by atmospheric water. Given the additional water information, moisture and temperature as well as the geopotential of pressure surfaces can be separated and solved for. Error covariance results indicate that the accuracies of individual water profiles will be 0.5%–3% extending from roughly 1–75-km altitude. Temperature accuracies of individual profiles will be sub-Kelvin from ∼1- to 70-km altitude depending on latitude and season. Accuracies of geopotential heights of pressure will be 10–20 m from the surface to 60-km altitude. These errors are random such that climatological averages derived from this data will be significantly more accurate. Owing to the limb-viewing geometry, the along-track resolution is comparable to the 200–300 km of the GPS occultation observations, but the shorter 22- and 183-GHz wavelengths improve the diffraction-limited vertical resolution to 100–300 m. The technique can be also used to determine profiles of other atmospheric constituents such as upper-tropospheric and stratospheric ozone by using frequencies near strong lines of that constituent. The combined dynamic range, accuracy, vertical resolution, and ability to penetrate clouds far surpass that of any present or planned satellite sensors. A constellation of such sensors would provide an all-weather, global remote sensing capability including full sampling of the diurnal cycle for process studies related to water, climate research, and weather prediction in general.

Full access
C. J. Donlon, P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and M. J. Murray

Abstract

A poor validation strategy will compromise the quality of satellite-derived sea surface temperature (SST) products because confidence limits cannot be quantified. This paper addresses the question of how to provide the best operational strategy to validate satellite-derived skin sea surface temperature (SSTskin) measurements. High quality in situ observations obtained using different state-of-the-art infrared radiometer systems are used to characterize the relationship between the SSTskin, the subsurface SST at depth (SSTdepth), and the surface wind speed. Data are presented for different oceans and seasons. These data indicate that above a wind speed of approximately 6 m s−1 the relationship between the SSTskin and SSTdepth, is well characterized for both day- and nighttime conditions by a cool bias of −0.17 ± 0.07 K rms. At lower wind speeds, stratification of the upper-ocean layers during the day may complicate the relationship, while at night a cooler skin is normally observed. Based on these observations, a long-term global satellite SSTskin validation strategy is proposed. Emphasis is placed on the use of autonomous, ship-of-opportunity radiometer systems for areas characterized by prevailing low–wind speed conditions. For areas characterized by higher wind speed regimes, well-calibrated, quality-controlled, ship and buoy SSTdepth observations, corrected for a cool skin bias, should also be used. It is foreseen that SSTdepth data will provide the majority of in situ validation data required for operational satellite SST validation. We test the strategy using SSTskin observations from the Along Track Scanning Radiometer, which are shown to be accurate to approximately 0.2 K in the tropical Pacific Ocean, and using measurements from the Advanced Very High Resolution Radiometer. We note that this strategy provides for robust retrospective calibration and validation of satellite SST data and a means to compare and compile in a meaningful and consistent fashion similar datasets. A better understanding of the spatial and temporal variability of thermal stratification of the upper-ocean layers during low–wind speed conditions is fundamental to improvements in SST validation and development of multisensor satellite SST products.

Full access
Erik Nilsson, Hans Bergström, Anna Rutgersson, Eva Podgrajsek, Marcus B. Wallin, Gunnar Bergström, Ebba Dellwik, Sebastian Landwehr, and Brian Ward

Abstract

Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air–sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. Values of CO2 are usually measured with infrared absorption sensors, which at the same time measure water vapor. Studies have shown that the presence of water vapor fluctuations in the sampling air potentially results in erroneous CO2 flux measurements resulting from the cross sensitivity of the sensor. Here measured CO2 fluxes from both enclosed-path Li-Cor 7200 sensors and open-path Li-Cor 7500 instruments from an inland measurement site are compared with a marine site. Also, new quality control criteria based on a relative signal strength indicator (RSSI) are introduced. The sampling gas in one of the Li-Cor 7200 instruments was dried by means of a multitube diffusion dryer so that the water vapor fluxes were close to zero. With this setup the effect that cross sensitivity of the CO2 signal to water vapor can have on the CO2 fluxes was investigated. The dryer had no significant effect on the CO2 fluxes. The study tested the hypothesis that the cross-sensitivity effect is caused by hygroscopic particles such as sea salt by spraying a saline solution on the windows of the Li-Cor 7200 instruments during the inland field test. The results confirm earlier findings that sea salt contamination can affect CO2 fluxes significantly and that drying the sampling air for the gas analyzer is an effective method for reducing this signal contamination.

Full access
G. Reverdin, S. Morisset, H. Bellenger, J. Boutin, N. Martin, P. Blouch, J. Rolland, F. Gaillard, P. Bouruet-Aubertot, and B. Ward

Abstract

This study describes how the hull temperature (Ttop) measurements from multisensor surface velocity program (SVP) drifters can be combined with other measurements to provide quantitative information on near-surface vertical temperature stratification during large daily cycles. First, Ttop is compared to the temperature measured at 17 -cm depth from a float tethered to the SVP drifter. These 2007–12 SVP drifters present a larger daily cycle by 1%–3% for 1°–2°C daily cycle amplitudes, with a maximum difference close to the local noon. The difference could result from flow around the SVP drifter in the presence of temperature stratification in the top 20 cm of the water column but also from a small influence of internal drifter temperature on Ttop. The largest differences were found for small drifters (Technocean) for very large daily cycles, as expected from their shallower measurements. The vertical stratification is estimated by comparing these hull data with the deeper T or conductivity C measurements from Sea-Bird sensors 25 (Pacific Gyre) to 45 cm (MetOcean) below the top temperature sensor. The largest stratification is usually found near local noon and early afternoon. For a daily cycle amplitude of 1°C, these differences with the upper level are in the range of 3%–5% of the daily cycle for the Pacific Gyre drifters and 6%–10% for MetOcean drifters with the largest values occurring when the midday sun elevation is lowest. The relative differences increase for larger daily cycles, and the vertical profiles become less linear. These estimated stratifications are well above the uncertainty on Ttop.

Full access
Xiangyu Ao, C. S. B. Grimmond, H. C. Ward, A. M. Gabey, Jianguo Tan, Xiu-Qun Yang, Dongwei Liu, Xing Zhi, Hongya Liu, and Ning Zhang

Abstract

The Surface Urban Energy and Water Balance Scheme (SUEWS) is used to investigate the impact of anthropogenic heat flux Q F and irrigation on surface energy balance partitioning in a central business district of Shanghai. Diurnal profiles of Q F are carefully derived based on city-specific hourly electricity consumption data, hourly traffic data, and dynamic population density. The Q F is estimated to be largest in summer (mean daily peak 236 W m−2). When Q F is omitted, the SUEWS sensible heat flux Q H reproduces the observed diurnal pattern generally well, but the magnitude is underestimated compared to observations for all seasons. When Q F is included, the Q H estimates are improved in spring, summer, and autumn but are poorer in winter, indicating winter Q F is overestimated. Inclusion of Q F has little influence on the simulated latent heat flux Q E but improves the storage heat flux estimates except in winter. Irrigation, both amount and frequency, has a large impact on Q E. When irrigation is not considered, the simulated Q E is underestimated for all seasons. The mean summer daytime Q E is largely overestimated compared to observations under continuous irrigation conditions. Model results are improved when irrigation occurs with a 3-day frequency, especially in summer. Results are consistent with observed monthly outdoor water use. This study highlights the importance of appropriately including Q F and irrigation in urban land surface models—terms not generally considered in many previous studies.

Full access
J. Boutin, Y. Chao, W. E. Asher, T. Delcroix, R. Drucker, K. Drushka, N. Kolodziejczyk, T. Lee, N. Reul, G. Reverdin, J. Schanze, A. Soloviev, L. Yu, J. Anderson, L. Brucker, E. Dinnat, A. Santos-Garcia, W. L. Jones, C. Maes, T. Meissner, W. Tang, N. Vinogradova, and B. Ward

Abstract

Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 × 100 km2. In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability.

Full access
J. Vialard, J. P. Duvel, M. J. McPhaden, P. Bouruet-Aubertot, B. Ward, E. Key, D. Bourras, R. Weller, P. Minnett, A. Weill, C. Cassou, L. Eymard, T. Fristedt, C. Basdevant, Y. Dandonneau, O. Duteil, T. Izumo, C. de Boyer Montégut, S. Masson, F. Marsac, C. Menkes, and S. Kennan

The Vasco-Cirene program explores how strong air-sea interactions promoted by the shallow thermocline and high sea surface temperature in the Seychelles-Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceanographic cruise collected oceanic, atmospheric, and air-sea flux observations in this region in January–February 2007. The contemporaneous Vasco field experiment complemented these measurements with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a mooring and 12 Argo profilers.

Unusual conditions prevailed in the Indian Ocean during January and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles-Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cooling over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.

Full access
J. Vialard, J. P. Duvel, M. J. Mcphaden, P. Bouruet-Aubertot, B. Ward, E. Key, D. Bourras, R. Weller, P. Minnett, A. Weill, C. Cassou, L. Eymard, T. Fristedt, C. Basdevant, Y. Dandonneau, O. Duteil, T. Izumo, C. de Boyer Montégut, S. Masson, F. Marsac, C. Menkes, and S. Kennan

Abstract

The Vasco—Cirene field experiment, in January—February 2007, targeted the Seychelles—Chagos thermocline ridge (SCTR) region, with the main purpose of investigating Madden—Julian Oscillation (MJO)-related SST events. The Validation of the Aeroclipper System under Convective Occurrences (Vasco) experiment (Duvel et al. 2009) and Cirene cruise were designed to provide complementary views of air—sea interaction in the SCTR region. While meteorological balloons were deployed from the Seychelles as a part of Vasco, the Research Vessel (R/V) Suroît was cruising the SCTR region as a part of Cirene.

Full access