Search Results

You are looking at 11 - 20 of 22 items for

  • Author or Editor: Bart Nijssen x
  • All content x
Clear All Modify Search
Elizabeth A. Clark, Justin Sheffield, Michelle T. H. van Vliet, Bart Nijssen, and Dennis P. Lettenmaier

Abstract

A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.

Full access
Hisham Eldardiry, Asif Mahmood, Xiaodong Chen, Faisal Hossain, Bart Nijssen, and Dennis P. Lettenmaier

Abstract

Atmospheric rivers (ARs) are narrow, elongated corridors of high water vapor content transported from tropical and/or extratropical cyclones. We characterize precipitation and snow water equivalent associated with ARs intersecting the western U.S. coast during the cold season (November– March) of water years 1949–2015. For each AR landfalling date, we retrieved the precipitation and relevant hydrometeorological variables from dynamically downscaled atmospheric reanalyses (NCEP–NCAR) using the WRF mesoscale numerical weather prediction model. Landfalling ARs resulted in higher precipitation amounts throughout the domain than did non-AR storms. ARs contributed the most extreme precipitation events during January and February. Daily snow water equivalent (SWE) changes during ARs indicate that high positive net snow accumulation conditions accompany ARs in December, January, and February. We also assess the historical impact of AR storm duration and precipitation frequency by considering the precipitation depth estimated during a 72-h window bounding the AR landfall date. More extreme precipitation amounts are produced by ARs in the South Cascades and Sierra Nevada ranges compared with ARs with landfall farther north. Most AR extreme precipitation events (and lower SWE accumulations) are produced during warm AR dates, especially toward the northern end of our domain. Analysis of ARs during dry and wet years reveals that ARs during wet years are more frequent and produce heavier precipitation and snow accumulation as compared with dry years. Such conditions are evident in drought events that are associated with a reduced frequency of ARs.

Full access
Ben Livneh, Eric A. Rosenberg, Chiyu Lin, Bart Nijssen, Vimal Mishra, Kostas M. Andreadis, Edwin P. Maurer, and Dennis P. Lettenmaier

Abstract

This paper describes a publicly available, long-term (1915–2011), hydrologically consistent dataset for the conterminous United States, intended to aid in studies of water and energy exchanges at the land surface. These data are gridded at a spatial resolution of latitude/longitude and are derived from daily temperature and precipitation observations from approximately 20 000 NOAA Cooperative Observer (COOP) stations. The available meteorological data include temperature, precipitation, and wind, as well as derived humidity and downwelling solar and infrared radiation estimated via algorithms that index these quantities to the daily mean temperature, temperature range, and precipitation, and disaggregate them to 3-hourly time steps. Furthermore, the authors employ the variable infiltration capacity (VIC) model to produce 3-hourly estimates of soil moisture, snow water equivalent, discharge, and surface heat fluxes. Relative to an earlier similar dataset by Maurer and others, the improved dataset has 1) extended the period of analysis (1915–2011 versus 1950–2000), 2) increased the spatial resolution from ⅛° to , and 3) used an updated version of VIC. The previous dataset has been widely used in water and energy budget studies, climate change assessments, drought reconstructions, and for many other purposes. It is anticipated that the spatial refinement and temporal extension will be of interest to a wide cross section of the scientific community.

Full access
Ben Livneh, Eric A. Rosenberg, Chiyu Lin, Bart Nijssen, Vimal Mishra, Kostas M. Andreadis, Edwin P. Maurer, and Dennis P. Lettenmaier
Full access
Alice K. DuVivier, John J. Cassano, Anthony Craig, Joseph Hamman, Wieslaw Maslowski, Bart Nijssen, Robert Osinski, and Andrew Roberts

Abstract

Strong, mesoscale tip jets and barrier winds that occur along the southeastern Greenland coast have the potential to impact deep convection in the Irminger Sea. The self-organizing map (SOM) training algorithm was used to identify 12 wind patterns that represent the range of winter [November–March (NDJFM)] wind regimes identified in the fully coupled Regional Arctic System Model (RASM) during 1990–2010. For all wind patterns, the ocean loses buoyancy, primarily through the turbulent sensible and latent heat fluxes; haline contributions to buoyancy change were found to be insignificant compared to the thermal contributions. Patterns with westerly winds at the Cape Farewell area had the largest buoyancy loss over the Irminger and Labrador Seas due to large turbulent fluxes from strong winds and the advection of anomalously cold, dry air over the warmer ocean. Similar to observations, RASM simulated typical ocean mixed layer depths (MLD) of approximately 400 m throughout the Irminger basin, with individual years experiencing MLDs of 800 m or greater. The ocean mixed layer deepens over most of the Irminger Sea following wind events with northerly flow, and the deepening is greater for patterns of longer duration. Seasonal deepest MLD is strongly and positively correlated to the frequency of westerly tip jets with northerly flow.

Full access
Bart Nijssen, Shraddhanand Shukla, Chiyu Lin, Huilin Gao, Tian Zhou, Ishottama, Justin Sheffield, Eric F. Wood, and Dennis P. Lettenmaier

Abstract

The implementation of a multimodel drought monitoring system is described, which provides near-real-time estimates of surface moisture storage for the global land areas between 50°S and 50°N with a time lag of about 1 day. Near-real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system distinguishes itself from other operational systems in that it uses multiple land surface models (Variable Infiltration Capacity, Noah, and Sacramento) to simulate surface moisture storage, which are then combined to derive a multimodel estimate of drought. A comparison of the results with other historic and current drought estimates demonstrates that near-real-time nowcasting of global drought conditions based on satellite and model forcings is entirely feasible. However, challenges remain because hydrological droughts are inherently defined in the context of a long-term climatology. Changes in observing platforms can be misinterpreted as droughts (or as excessively wet periods). This problem cannot simply be addressed through the addition of more observations or through the development of new observing platforms. Instead, it will require careful (re)construction of long-term records that are updated in near–real time in a consistent manner so that changes in surface meteorological forcings reflect actual conditions rather than changes in methods or sources.

Full access
Naoki Mizukami, Martyn P. Clark, Ethan D. Gutmann, Pablo A. Mendoza, Andrew J. Newman, Bart Nijssen, Ben Livneh, Lauren E. Hay, Jeffrey R. Arnold, and Levi D. Brekke

Abstract

Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

Full access
Andrew J. Newman, Martyn P. Clark, Jason Craig, Bart Nijssen, Andrew Wood, Ethan Gutmann, Naoki Mizukami, Levi Brekke, and Jeff R. Arnold

Abstract

Gridded precipitation and temperature products are inherently uncertain because of myriad factors, including interpolation from a sparse observation network, measurement representativeness, and measurement errors. Generally uncertainty is not explicitly accounted for in gridded products of precipitation or temperature; if it is represented, it is often included in an ad hoc manner. A lack of quantitative uncertainty estimates for hydrometeorological forcing fields limits the application of advanced data assimilation systems and other tools in land surface and hydrologic modeling. This study develops a gridded, observation-based ensemble of precipitation and temperature at a daily increment for the period 1980–2012 for the conterminous United States, northern Mexico, and southern Canada. This allows for the estimation of precipitation and temperature uncertainty in hydrologic modeling and data assimilation through the use of the ensemble variance. Statistical verification of the ensemble indicates that it has generally good reliability and discrimination of events of various magnitudes but has a slight wet bias for high threshold events (>50 mm). The ensemble mean is similar to other widely used hydrometeorological datasets but with some important differences. The ensemble product produces a more realistic occurrence of precipitation statistics (wet day fraction), which impacts the empirical derivation of other fields used in land surface and hydrologic modeling. In terms of applications, skill in simulations of streamflow in 671 headwater basins is similar to other coarse-resolution datasets. This is the first version, and future work will address temporal correlation of precipitation anomalies, inclusion of other data streams, and examination of topographic lapse rate choices.

Full access
Joseph Hamman, Bart Nijssen, Michael Brunke, John Cassano, Anthony Craig, Alice DuVivier, Mimi Hughes, Dennis P. Lettenmaier, Wieslaw Maslowski, Robert Osinski, Andrew Roberts, and Xubin Zeng

Abstract

The Regional Arctic System Model (RASM) is a fully coupled, regional Earth system model applied over the pan-Arctic domain. This paper discusses the implementation of the Variable Infiltration Capacity land surface model (VIC) in RASM and evaluates the ability of RASM, version 1.0, to capture key features of the land surface climate and hydrologic cycle for the period 1979–2014 in comparison with uncoupled VIC simulations, reanalysis datasets, satellite measurements, and in situ observations. RASM reproduces the dominant features of the land surface climatology in the Arctic, such as the amount and regional distribution of precipitation, the partitioning of precipitation between runoff and evapotranspiration, the effects of snow on the water and energy balance, and the differences in turbulent fluxes between the tundra and taiga biomes. Surface air temperature biases in RASM, compared to reanalysis datasets ERA-Interim and MERRA, are generally less than 2°C; however, in the cold seasons there are local biases that exceed 6°C. Compared to satellite observations, RASM captures the annual cycle of snow-covered area well, although melt progresses about two weeks faster than observations in the late spring at high latitudes. With respect to derived fluxes, such as latent heat or runoff, RASM is shown to have similar performance statistics as ERA-Interim while differing substantially from MERRA, which consistently overestimates the evaporative flux across the Arctic region.

Full access
Martyn P. Clark, Reza Zolfaghari, Kevin R. Green, Sean Trim, Wouter J. M. Knoben, Andrew Bennett, Bart Nijssen, Andrew Ireson, and Raymond J. Spiteri

Abstract

The intent of this paper is to encourage improved numerical implementation of land models. Our contributions in this paper are two-fold. First, we present a unified framework to formulate and implement land model equations. We separate the representation of physical processes from their numerical solution, enabling the use of established robust numerical methods to solve the model equations. Second, we introduce a set of synthetic test cases (the laugh tests) to evaluate the numerical implementation of land models. The test cases include storage and transmission of water in soils, lateral sub-surface flow, coupled hydrological and thermodynamic processes in snow, and cryosuction processes in soil. We consider synthetic test cases as “laugh tests” for land models because they provide the most rudimentary test of model capabilities. The laugh tests presented in this paper are all solved with the Structure for Unifying Multiple Modeling Alternatives model (SUMMA) implemented using the SUite of Nonlinear and DIfferential/Algebraic equation Solvers (SUNDIALS). The numerical simulations from SUMMA/SUNDIALS are compared against (1) solutions to the synthetic test cases from other models documented in the peer-reviewed literature; (2) analytical solutions; and (3) observations made in laboratory experiments. In all cases, the numerical simulations are similar to the benchmarks, building confidence in the numerical model implementation. We posit that some land models may have difficulty in solving these benchmark problems. Dedicating more effort to solving synthetic test cases is critical in order to build confidence in the numerical implementation of land models.

Open access