Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Bo Huang x
  • All content x
Clear All Modify Search
Zhiwei Zhang, Xincheng Zhang, Bo Qiu, Wei Zhao, Chun Zhou, Xiaodong Huang, and Jiwei Tian


Although observational efforts have been made to detect submesoscale currents (submesoscales) in regions with deep mixed layers and/or strong mesoscale kinetic energy (KE), there have been no long-term submesoscale observations in subtropical gyres, which are characterized by moderate values of both mixed layer depths and mesoscale KE. To explore submesoscale dynamics in this oceanic regime, two nested mesoscale- and submesoscale-resolving mooring arrays were deployed in the northwestern Pacific subtropical countercurrent region during 2017–19. Based on the 2 years of data, submesoscales featuring order one Rossby numbers, large vertical velocities (with magnitude of 10–50 m day−1) and vertical heat flux, and strong ageostrophic KE are revealed in the upper 150 m. Although most of the submesoscales are surface intensified, they are found to penetrate far beneath the mixed layer. They are most energetic during strong mesoscale strain periods in the winter–spring season but are generally weak in the summer–autumn season. Energetics analysis suggests that the submesoscales receive KE from potential energy release but lose a portion of it through inverse cascade. Because this KE sink is smaller than the source term, a forward cascade must occur to balance the submesoscale KE budget, for which symmetric instability may be a candidate mechanism. By synthesizing observations and theories, we argue that the submesoscales are generated through a combination of baroclinic instability in the upper mixed and transitional layers and mesoscale strain-induced frontogenesis, among which the former should play a more dominant role in their final generation stage.

Restricted access
Chao-Lin Wang, Shao-Bo Zhong, Guan-Nan Yao, and Quan-Yi Huang


Drought disasters cause great economic losses in China every year, especially in its southwest, and they have had a major influence on economic development, lives, and property. In this study, precipitation and drought hazards were examined for a region covering Yunnan, Guizhou, and Guangxi Provinces to assess the spatial and temporal distribution of different drought hazard grades in this region. Annual precipitation data from 90 meteorological stations in or around the study area were collected and organized for the period of 1964–2013. A spatiotemporal covariance model was calculated and fitted. The Bayesian maximum entropy (BME) method, which considers physical knowledge bases to reduce errors, was used to provide an optimal estimation of annual precipitation. Regional annual precipitation distributions were determined. To analyze the spatiotemporal patterns of the drought hazard, the annual standardized precipitation index was used to measure drought severity. A method that involves space–time scan statistics was used to detect the most likely spatiotemporal clusters of the drought hazards. Test-significance p values for all of the calculated clusters were less than 0.001, indicating a high significance level. The results showed that Yunnan Province was a drought-prone area, especially in its northwest and center, followed by Guizhou Province. In addition, Yunnan and Guizhou Provinces were cluster areas of severe and extreme drought. The most likely cluster year was 1966; it was clustered five times during the study period. In this study, the evolutionary process of drought hazards, including spatiotemporal distribution and spatiotemporal clustering characteristics, was considered. The results may be used to provide support for prevention and mitigation of drought in the study area such as optimizing the distribution of drought-resisting resources, drought monitoring, and evaluating potential drought impacts.

Full access
Zhongbin Sun, Zhiwei Zhang, Bo Qiu, Xincheng Zhang, Chun Zhou, Xiaodong Huang, Wei Zhao, and Jiwei Tian


Based on long-term mooring-array and satellite observations, three-dimensional structure and interannual variability of the Kuroshio Loop Current (KLC) in the northeastern South China Sea (SCS) were investigated. The 3-yr moored data between 2014 and 2017 revealed that the KLC mainly occurred in winter and it exhibited significant interannual variability with moderate, weak, and strong strengths in the winters of 2014/15, 2015/16, and 2016/17, respectively. Spatially, the KLC structure was initially confined to the upper 500 m near the Luzon Strait, but it became more barotropic, with kinetic energy transferring from the baroclinic mode to the barotropic mode when it extended into the SCS interior. Through analyzing the historical altimeter data between 1993 and 2019, it is found that the KLC event in 2016/17 winter is the strongest one since 1993. Moored-data-based energetics analysis suggested that the growth of this KLC event was primarily fed by the strong wind work associated with the strengthened northeast monsoon in that La Niña–year winter. By examining all of the historical KLC events, it is found that the strength of KLC is significantly modulated by El Niño–Southern Oscillation, being stronger in La Niña and weaker in El Niño years. This interannual modulation could be explained by the strengthened (weakened) northeast monsoon associated with the anomalous atmospheric cyclone (anticyclone) in the western North Pacific during La Niña (El Niño) years, which inputs more (less) energy and negative vorticity southwest of Taiwan that is favorable (unfavorable) for the development of KLC.

Restricted access
Xin Huang, Tianjun Zhou, Andrew Turner, Aiguo Dai, Xiaolong Chen, Robin Clark, Jie Jiang, Wenmin Man, James Murphy, John Rostron, Bo Wu, Lixia Zhang, Wenxia Zhang, and Liwei Zou


The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day−1 decade−1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day−1 decade−1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia.

Open access