Search Results

You are looking at 11 - 20 of 30 items for

  • Author or Editor: Chao Li x
  • All content x
Clear All Modify Search
Zhijin Li, Yi Chao, James C. McWilliams, and Kayo Ide

Abstract

A three-dimensional variational data assimilation (3DVAR) scheme has been developed within the framework of the Regional Ocean Modeling System (ROMS). This ROMS3DVAR enables the capability of predicting meso- to small-scale variations with temporal scales from hours to days in coastal oceans. To cope with particular difficulties that result from complex coastlines and bottom topography, unbalanced flows, and sparse observations, ROMS3DVAR includes novel strategies. These strategies include the implementation of three-dimensional anisotropic and inhomogeneous error correlations based on a Kronecker product, application of particular weak dynamic constraints, and implementation of efficient and reliable algorithms for minimizing the cost function. The formulation of ROMS3DVAR is presented here, and its implementation off the West Coast is currently under way.

Full access
Yaheng Tan, Francis Zwiers, Song Yang, Chao Li, and Kaiqiang Deng

Abstract

Performance in simulating atmospheric rivers (ARs) over western North America based on AR frequency and landfall latitude is evaluated for 10 models from phase 5 of the Coupled Model Intercomparison Project among which the CanESM2 model performs well. ARs are classified into southern, northern, and middle types using self-organizing maps in the ERA-Interim reanalysis and CanESM2. The southern type is associated with the development and eastward movement of anomalous lower pressure over the subtropical eastern Pacific, while the northern type is linked with the eastward movement of anomalous cyclonic circulation stimulated by warm sea surface temperatures over the subtropical western Pacific. The middle type is connected with the negative phase of North Pacific Oscillation–west Pacific teleconnection pattern. CanESM2 is further used to investigate projected AR changes at the end of the twenty-first century under the representative concentration pathway 8.5 scenario. AR definitions usually reference fixed integrated water vapor or integrated water vapor transport thresholds. AR changes under such definitions reflect both thermodynamic and dynamic influences. We therefore also use a modified AR definition that isolates change from dynamic influences only. The total AR frequency doubles compared to the historical period, with the middle AR type contributing the largest increases along the coasts of Vancouver Island and California. Atmospheric circulation (dynamic) changes decrease northern AR type frequency while increasing middle AR type frequency, indicating that future changes of circulation patterns modify the direct effect of warming on AR frequency, which would increase ARs (relative to fixed thresholds) almost everywhere along the North American coastline.

Open access
Xianjin Li, Yi Chao, James C. McWilliams, and Lee-Lueng Fu

Abstract

The upper Pacific Ocean Current and temperature have been simulated by a three-dimensional ocean general circulation model (OGCM) with two different vertical-mixing schemes. One corresponds to the modified Richardson number–dependent scheme of Pacanowski and Philander (PP); the other is adapted from the newly developed K-Profile Parameterization (KPP) scheme. The performance of both schemes in a Pacific OGCM is evaluated under the same model configuration and boundary conditions. Model and data comparisons are made for the mean state, annual cycle, and interannual-to-interdecadal variability. In the Tropics, both the PP and KPP schemes produce reasonably realistic tropical thermal and current structures; however, KPP is better than PP in several important aspects. For example, the KPP scheme simulates a more realistic thermocline and significantly reduces the cold surface temperature bias in the eastern equatorial Pacific. The depth of the maximum Equatorial Undercurrent simulated by the KPP scheme is much closer to the observation. In the extratropics the KPP scheme is significantly better than the PP scheme in simulating the thermal and current structures, including the annual mean, annual cycle, and interannual-to-interdecadal variability.

Full access
Chao He, Ziqian Wang, Tianjun Zhou, and Tim Li

Abstract

Coupled climate system models consistently show that the low-level southerly wind associated with the East Asian summer monsoon (EASM) is enhanced under anthropogenic greenhouse gas forcing, and the enhanced EASM was attributed to the enhanced land–sea thermal contrast by previous studies. Based on a comparison of the global warming scenarios with the present-day climate in an ensemble of 30 coupled models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), we show evidence that changes in land–sea thermal contrast cannot explain the enhanced EASM circulation in terms of the seasonality. Indeed, the enhanced low-level southerly wind over East Asia is associated with a large-scale anomalous cyclone around the Tibetan Plateau (TP), and numerical simulation by the Linear Baroclinic Model suggests that the enhanced latent heating over the TP associated with enhanced precipitation is responsible for this low-level cyclone anomaly and the enhanced EASM circulation projected by the coupled models. Moisture budget analysis shows that enhanced hydrological recycling and enhanced vertical moisture advection due to increased specific humidity have the largest contribution to the increased precipitation over the TP, and more than half of the intermodel uncertainty in the projected change of EASM circulation is associated with the uncertainty in the changes of precipitation over the TP. Therefore, the TP plays an essential role in enhancing the EASM circulation under global warming through enhanced latent heating over the TP.

Full access
Chao Li, Francis Zwiers, Xuebin Zhang, Guilong Li, Ying Sun, and Michael Wehner

Abstract:

This study presents an analysis of daily temperature and precipitation extremes with return periods ranging from 2 to 50 years in the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model ensemble of simulations. Judged by similarity with reanalyses, the new-generation models simulate the present-day temperature and precipitation extremes reasonably well. In line with previous CMIP simulations, the new simulations continue to project a large-scale picture of more frequent and more intense hot temperature extremes and precipitation extremes and vanishing cold extremes under continued global warming. Changes in temperature extremes outpace changes in global annual mean surface air temperature (GSAT) over most land masses, while changes in precipitation extremes follow changes in GSAT globally at roughly the Clausius-Clapeyron rate of ∼7%/°C. Changes in temperature and precipitation extremes normalized with respect to GSAT do not depend strongly on the choice of forcing scenario or model climate sensitivity, and do not vary strongly over time, but with notable regional variations. Over the majority of land regions, the projected intensity increases and relative frequency increases tend to be larger for more extreme hot temperature and precipitation events than for weaker events. To obtain robust estimates of these changes at local scales, large initial-condition ensemble simulations are needed. Appropriate spatial pooling of data from neighboring grid cells within individual simulations can, to some extent, reduce the needed ensemble size.

Restricted access
Minghao Yang, Chongyin Li, Xin Li, Yanke Tan, Xiong Chen, and Chao Zhang

Abstract

Based on the daily NCEP reanalysis, the present study investigates the interdecadal change in the relationship between the winter North Pacific storm track (WNPST) and the East Asian winter monsoon (EAWM), and evaluates the WNPST–EAWM relationship in 17 CMIP6 models. The results show that the out-of-phase WNPST–EAWM relationship underwent an interdecadal change in the mid-1980s. The WNPST–EAWM relationship became less significant during period 2 (P2; 1990–2015). The atmospheric circulation anomaly related to the EAWM during period 1 (P1; 1955–80) is more robust than that during P2. The interdecadal weakening WNPST–EAWM relationship may be attributed to the interdecadal damping WNPST–EAWM interaction. The EAWM-related anomalous baroclinic energy conversion and moisture effects, including meridional and vertical eddy moisture fluxes, contribute to the significant attenuation of the WNPST during P1. The transient eddy-induced dynamic forcing and thermal forcing anomalies, as well as the barotropic process represented by the local Eliassen–Palm flux divergence associated with WNPST, can also significantly manipulate the upper-tropospheric jet during P1. However, the atmospheric circulation and interaction between the WNPST and EAWM during P2 are not as significant as those during P1. The effect of ENSO on the WNPST is significantly different before and after the mid-1980s. After the mid-1980s, the WNPST shows the characteristic of moving equatorward during El Niño events. It seems that ENSO takes over the WNPST from the EAWM after the mid-1980s. In addition, except for BCC-ESM1, CanESM5, and SAM0-UNICON, most of the CMIP6 models cannot reproduce the significant out-of-phase WNPST–EAWM relationship.

Restricted access
Chao Li, Francis Zwiers, Xuebin Zhang, Guilong Li, Ying Sun, and Michael Wehner

Abstract

This study presents an analysis of daily temperature and precipitation extremes with return periods ranging from 2 to 50 years in phase 6 of the Coupled Model Intercomparison Project (CMIP6) multimodel ensemble of simulations. Judged by similarity with reanalyses, the new-generation models simulate the present-day temperature and precipitation extremes reasonably well. In line with previous CMIP simulations, the new simulations continue to project a large-scale picture of more frequent and more intense hot temperature extremes and precipitation extremes and vanishing cold extremes under continued global warming. Changes in temperature extremes outpace changes in global annual mean surface air temperature (GSAT) over most landmasses, while changes in precipitation extremes follow changes in GSAT globally at roughly the Clausius–Clapeyron rate of ~7% °C−1. Changes in temperature and precipitation extremes normalized with respect to GSAT do not depend strongly on the choice of forcing scenario or model climate sensitivity, and do not vary strongly over time, but with notable regional variations. Over the majority of land regions, the projected intensity increases and relative frequency increases tend to be larger for more extreme hot temperature and precipitation events than for weaker events. To obtain robust estimates of these changes at local scales, large initial-condition ensemble simulations are needed. Appropriate spatial pooling of data from neighboring grid cells within individual simulations can, to some extent, reduce the needed ensemble size.

Open access
Chad Shouquan Cheng, Guilong Li, Qian Li, Heather Auld, and Chao Fu

Abstract

Hourly/daily wind gust simulation models and regression-based downscaling methods were developed to assess possible impacts of climate change on future hourly/daily wind gust events over the province of Ontario, Canada. Since the climate/weather validation process is critical, a formal model result verification process has been built into the analysis to ascertain whether the methods are suitable for future projections. The percentage of excellent and good simulations among all studied seven wind gust categories ranges from 94% to 100% and from 69% to 95%, respectively, for hourly and daily wind gusts, for both model development and validation.

The modeled results indicate that frequencies of future hourly/daily wind gust events are projected to increase late this century over the study area under a changing climate. For example, across the study area, the annual mean frequency of future hourly wind gust events ≥28, ≥40, and ≥70 km h−1 for the period 2081–2100 derived from the ensemble of downscaled eight-GCM A2 simulations is projected to be about 10%–15%, 10%–20%, and 20%–40% greater than the observed average during the period 1994–2007, respectively. The corresponding percentage increase for future daily wind gust events is projected to be <10%, ~10%, and 15%–25%. Inter-GCM-model and interscenario uncertainties of future wind gust projections were quantitatively assessed. On average, projected percentage increases in frequencies of future hourly/daily wind gust events ≥28 and ≥40 km h−1 are about 90%–100% and 60%–80% greater than inter-GCM-model–interscenario uncertainties, respectively. For wind gust events ≥70 km h−1, the corresponding projected percentage increases are about 25%–35% greater than the interscenario uncertainties and are generally similar to inter-GCM-model uncertainties.

Full access
Siyan Dong, Ying Sun, Chao Li, Xuebin Zhang, Seung-Ki Min, and Yeon-Hee Kim

Abstract

While the IPCC Fifth Assessment Working Group I report assessed observed changes in extreme precipitation on the basis of both absolute and percentile-based extreme indices, human influence on extreme precipitation has rarely been evaluated on the basis of percentile-based extreme indices. Here we conduct a formal detection and attribution analysis on changes in four percentile-based precipitation extreme indices. The indices include annual precipitation totals from days with precipitation exceeding the 99th and 95th percentiles of wet-day precipitation in 1961–90 (R99p and R95p) and their contributions to annual total precipitation (R99pTOT and R95pTOT). We compare these indices from a set of newly compiled observations during 1951–2014 with simulations from models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). We show that most land areas with observations experienced increases in these extreme indices with global warming during the historical period 1951–2014. The new CMIP6 models are able to reproduce these overall increases, although with considerable over- or underestimations in some regions. An optimal fingerprinting analysis reveals detectable anthropogenic signals in the observations of these indices averaged over the globe and over most continents. Furthermore, signals of greenhouse gases can be separately detected, taking other forcing into account, over the globe and over Asia in these indices except for R95p. In contrast, signals of anthropogenic aerosols and natural forcings cannot be detected in any of these indices at either global or continental scales.

Open access
Chao Li, Ying Sun, Francis Zwiers, Dongqian Wang, Xuebin Zhang, Gang Chen, and Hui Wu

Abstract

On the basis of a newly developed observational dataset and a suite of climate model simulations, we evaluate changes in summer mean wet bulb globe temperature (WBGT) in China from 1961 through 2080. We show that summer mean WBGT has increased almost everywhere across China since 1961 as a result of human-induced climate change. Consequently, hot summers as measured by summer mean WBGT are becoming more frequent and more conducive to heat stress. Hot summers like the hottest on record during 1961–2015 in western or eastern China are now expected occur once every 3–4 years. These hot WBGT summers have become more than 140 times as likely in eastern China in the present decade (2010s) as in the 1961–90 baseline period and more than 1000 times as likely in western China. The substantially larger influence in western China is associated with its stronger warming signal, which is likely due to the high Bowen ratio of sensible to latent heat fluxes of dry soils and increases in absorbed solar radiation from the decline in mountain snow cover extent. Observation-constrained projections of future summer mean WBGT under the RCP8.5 emissions scenario indicate that, by the 2040s, almost every summer in China will be at least as hot as the hottest summer in the historical record, and by the 2060s it will be common (on average, every other year) for summers to be as much as 3.0°C hotter than the historical record, pointing to potentially large increases in the likelihood of human heat stress and to a massive adaption challenge.

Open access