Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: David Mechem x
  • All content x
Clear All Modify Search
Yefim L. Kogan, David B. Mechem, and Kityan Choi

Abstract

A suite of large-eddy simulations with size-resolving microphysical processes was performed in order to assess effects of sea-salt aerosols on precipitation process in trade cumulus. Simulations based on observations from the Rain in Cumulus over the Ocean (RICO) field campaign explored the effects of adding sea-salt nuclei in different size ranges by following the evolution of 369 cloud cells over the 24-h simulation period. The addition of large (small) sea-salt nuclei tends to accelerate (suppress) precipitation formation; however, in marine environments the sea-salt spectra always include a combination of both small (film) and large (jet) nuclei. When realistic sea-salt spectra are specified as a function of surface wind, the effect of the larger nuclei to enhance the precipitation predominates, and accumulated precipitation increases with wind speed. This effect, however, is strongly influenced by the choice of background CCN spectrum. Adding the same sea-salt specification to an environment with a higher background aerosol load results in a decrease in accumulated precipitation with increasing surface wind speed.

Results also suggest that the slope of the relationship between vertical velocity W and the concentration of embryonic precipitation particles at cloud base Nr may indicate the role of sea-salt nuclei. A negative slope (Nr decreasing with increasing W) points to the predominance of small sea-salt nuclei, in which larger updrafts activate a greater number of smaller cloud drops with smaller coalescence efficiencies, resulting in fewer embryonic rain drops. A positive slope, on the other hand, indicates the presence of large sea-salt nuclei, which are the source of embryonic rain drops.

Full access
Simon P. de Szoeke, Sandra Yuter, David Mechem, Chris W. Fairall, Casey D. Burleyson, and Paquita Zuidema

Abstract

Widespread stratocumulus clouds were observed on nine transects from seven research cruises to the southeastern tropical Pacific Ocean along 20°S, 75°–85°W in October–November of 2001–08. The nine transects sample a unique combination of synoptic and interannual variability affecting the clouds; their ensemble diagnoses longitude–vertical sections of the atmosphere, diurnal cycles of cloud properties and drizzle statistics, and the effect of stratocumulus clouds on surface radiation. Mean cloud fraction was 0.88, and 67% of 10-min overhead cloud fraction observations were overcast. Clouds cleared in the afternoon [1500 local time (LT)] to a minimum of fraction of 0.7. Precipitation radar found strong drizzle with reflectivity above 40 dBZ.

Cloud-base (CB) heights rise with longitude from 1.0 km at 75°W to 1.2 km at 85°W in the mean, but the slope varies from cruise to cruise. CB–lifting condensation level (LCL) displacement, a measure of decoupling, increases westward. At night CB–LCL is 0–200 m and increases 400 m from dawn to 1600 LT, before collapsing in the evening.

Despite zonal gradients in boundary layer and cloud vertical structure, surface radiation and cloud radiative forcing are relatively uniform in longitude. When present, clouds reduce solar radiation by 160 W m−2 and radiate 70 W m−2 more downward longwave radiation than clear skies. Coupled Model Intercomparison Project phase 3 (CMIP3) simulations of the climate of the twentieth century show 40 ± 20 W m−2 too little net cloud radiative cooling at the surface. Simulated clouds have correct radiative forcing when present, but models have ~50% too few clouds.

Full access
David B. Mechem, Carly S. Wittman, Matthew A. Miller, Sandra E. Yuter, and Simon P. de Szoeke

Abstract

Marine boundary layer clouds are modified by processes at different spatial and temporal scales. To isolate the processes governing aerosol–cloud–precipitation interactions, multiday synoptic variability of the environment must be accounted for. Information on the location of low clouds relative to the ridge–trough pattern gives insight into how cloud properties vary as a function of environmental subsidence and stability. The technique of self-organizing maps (SOMs) is employed to objectively classify the 500-hPa geopotential height patterns for 33 years of reanalysis fields (ERA-Interim) into pretrough, trough, posttrough, ridge, and zonal-flow categories. The SOM technique is applied to a region of prevalent marine low cloudiness over the eastern North Atlantic Ocean that is centered on the Azores island chain, the location of a long-term U.S. Department of Energy observation site. The Azores consistently lie in an area of substantial variability in synoptic configuration, thermodynamic environment, and cloud properties. The SOM method was run in two ways to emphasize multiday and seasonal variability separately. Over and near the Azores, there is an east-to-west sloshing back and forth of the western edge of marine low clouds associated with different synoptic states. The different synoptic states also exhibit substantial north–south variability in the position of high clouds. For any given month of the year, there is large year-to-year variability in the occurrence of different synoptic states. Hence, estimating the climatological behavior of clouds from short-term field campaigns has large uncertainties. This SOM approach is a robust method that is broadly applicable to characterizing synoptic regimes for any location.

Full access
Laura M. Tomkins, David B. Mechem, Sandra E. Yuter, and Spencer R. Rhodes

Abstract

Large, abrupt clearing events have been documented in the marine stratocumulus cloud deck over the subtropical Southeast Atlantic Ocean. In these events, clouds are rapidly eroded along a line hundreds–to–thousands of kilometers in length that generally moves westward away from the coast. Because marine stratocumulus clouds exert a strong cooling effect on the planet, any phenomenon that acts to erode large areas of low clouds may be climatically important. Previous satellite-based research suggests that the cloud-eroding boundaries may be caused by westward-propagating atmospheric gravity waves rather than simple advection of the cloud. The behavior of the coastal offshore flow, which is proposed as a fundamental physical mechanism associated with the clearing events, is explored using the Weather Research and Forecasting model. Results are presented from several week-long simulations in the month of May when cloud-eroding boundaries exhibit maximum frequency. Two simulations cover periods containing multiple cloud-eroding boundaries (active periods), and two other simulations cover periods without any cloud-eroding boundaries (null periods). Passive tracers and an analysis of mass flux are used to assess the character of the diurnal west-African coastal circulation. Results indicate that the active periods containing cloud-eroding boundaries regularly experience stronger and deeper nocturnal offshore flow from the continent above the marine boundary layer, compared to the null periods. Additionally, we find that the boundary layer height is higher in the null periods than in the active periods, suggesting that the active periods are associated with areas of thinner clouds that may be more susceptible to cloud erosion.

Restricted access
Simon P. de Szoeke, Kathryn L. Verlinden, Sandra E. Yuter, and David B. Mechem

Abstract

Multidecade global regressions of inversion strength, vertical velocity, and sea surface temperature (SST) on low cloud amount, from subdaily to multiyear time scales, refute the dominance of seasonal inversion strength on marine low cloud variability. Multiday low cloud variance averaged over the eastern Pacific and Atlantic stratocumulus regions [5 × 10−2 (cloud amount)2] is twice the subdaily variance and 5 times larger than the multimonth variance. The broad multiday band contains most (60%) of the variance, despite strong seasonal (annual) and diurnal spectral peaks. Multiday low cloud amount over the eastern tropical and midlatitude oceans is positively correlated to inversion strength, with a slope of 2%–5% K−1. Anecdotes show multiday low cloud and inversion strength anomalies propagate equatorward from midlatitudes. Previously shown correlations of low clouds to strong inversions and cool SST on monthly and longer time scales in the stratocumulus regions imply positive cloud-radiative feedbacks, with e-folding time scales of 300 days for SST and 14 days for atmospheric boundary layer temperature. On multimonth time scales, removing the effect of SST on low clouds reduces the low cloud amount explained by inversion strength by a factor of 3, but SST has a small effect at other time scales. Contrary to their positive correlation in the stratocumulus cloud decks, low clouds are anticorrelated to inversion strength over most of the tropics on daily and subdaily time scales.

Full access
David B. Mechem, Yefim L. Kogan, Mikhail Ovtchinnikov, Anthony B. Davis, K. Franklin Evans, and Robert G. Ellingson

Abstract

The importance of multidimensional (MD) longwave radiative effects on cloud dynamics is evaluated in an eddy-resolving model (ERM)—the two-dimensional analog to large-eddy simulation (LES)—framework employing multidimensional radiative transfer [Spherical Harmonics Discrete Ordinate Method (SHDOM)]. Simulations are performed for a case of unbroken, marine boundary layer stratocumulus and a broken field of trade cumulus. “Snapshot” calculations of MD and independent pixel approximation (IPA; 1D) radiative transfer applied to simulated cloud fields show that the total radiative forcing changes only slightly, although the MD effects significantly modify the spatial structure of the radiative forcing. Simulations of each cloud type employing MD and IPA radiative transfer, however, differ little. For the solid cloud case, relative to using IPA, the MD simulation exhibits a slight reduction in entrainment rate and boundary layer total kinetic energy (TKE) relative to the IPA simulation. This reduction is consistent with both the slight decrease in net radiative forcing and a negative correlation between local vertical velocity and radiative forcing, which implies a damping of boundary layer eddies. Snapshot calculations of the broken cloud case suggest a slight increase in radiative cooling, although few systematic differences are noted in the interactive simulations. This result is attributed to the fact that radiative cooling is a relatively minor contribution to the total energetics. For the cloud systems in this study, the use of IPA longwave radiative transfer is sufficiently accurate to capture the dynamical behavior of boundary layer clouds. Further investigations are required to generalize this conclusion for other cloud types and longer time integrations.

Full access
Valery M. Melnikov, Dusan S. Zrnić, Richard J. Doviak, Phillip B. Chilson, David B. Mechem, and Yefim L. Kogan

Abstract

Sounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a variety of clouds with reflectivities as low as −25 dBZ (at a range of 10 km). The high sensitivity of the WSR-88D, its wide velocity and unambiguous range intervals, and the absence of attenuation allow accurate measurements of the reflectivity factor, Doppler velocity, and spectrum width fields in clouds to ranges of about 50 km. Fields of polarimetric variables in clouds, observed with a research polarimetric WSR-88D, demonstrate an abundance of information and help to resolve Bragg and particulate scatter. The scanning, Doppler, and polarimetric capabilities of the WSR-88D allow real-time, three-dimensional mapping of cloud processes, such as transformations of hydrometeors between liquid and ice phases. The presence of ice particles is revealed by high differential reflectivities and the lack of correlation between reflectivity and differential reflectivity in clouds in contrast to that found for rain. Pockets of high differential reflectivities are frequently observed in clouds; maximal values of differential reflectivity exceed 8 dB, far above the level observed in rain. The establishment of the WSR-88D network consisting of 157 polarimetric radars can be used to collect cloud data at any radar site, making the network a potentially powerful tool for climatic studies.

Full access
Anne K. Smith, Mary Barth, William R. Boos, Elie Bou-Zeid, Yoshio Kawatani, Sukyoung Lee, David Mechem, Lorraine Remer, Christopher Rozoff, Susan van den Heever, Zhuo Wang, Louis Wicker, and Ping Yang
Open access
Robert Wood, Matthew Wyant, Christopher S. Bretherton, Jasmine Rémillard, Pavlos Kollias, Jennifer Fletcher, Jayson Stemmler, Simone de Szoeke, Sandra Yuter, Matthew Miller, David Mechem, George Tselioudis, J. Christine Chiu, Julian A. L. Mann, Ewan J. O’Connor, Robin J. Hogan, Xiquan Dong, Mark Miller, Virendra Ghate, Anne Jefferson, Qilong Min, Patrick Minnis, Rabindra Palikonda, Bruce Albrecht, Ed Luke, Cecile Hannay, and Yanluan Lin

Abstract

The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer.

Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.

The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

Full access