Search Results

You are looking at 11 - 20 of 30 items for

  • Author or Editor: David Rind x
  • All content x
Clear All Modify Search
Nambath K. Balachandran and David Rind

Abstract

Results of experiments with a GCM involving changes in UV input (±25%, ±10%, ±5% at wavelengths below 0.3 µm) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitude of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also wen in the observations. The high-latitude responses are due to altered planetary wave effect, while the model's tropical response in the upper stratosphere is due to gravity wave drag.

Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical wen winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary warm altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied.

Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes(east QB0 effect) is prevented from then propagating vertically (reduced UV effect). The model results are thus in general agreement with observations associated with solar UV/QBO variations, although the west phase is not absolutely warmer with increased UV. Questions remain concerning the actual variation of stratospheric winds with the solar cycle as the magnitude of the variations reported in some observations cannot be associated with UV variations in this model (but do arise in the model without any external forcing). The model results actually come closer to reproducing observations with the reduced magnitude of UV forcing due to the lower altitude of west wind response, despite the smaller wind variations involved. An evaluation of the reality of the reported effects of combined QBO and solar UV variations on the middle atmosphere requires the use of proper UV solar cycle forcing and should include possible ozone variations.

Full access
Gary L. Russell and David Rind

Abstract

The GISS coupled atmosphere–ocean model is used to investigate the effect of increased atmospheric CO2 by comparing a compounded 1% CO2 increase experiment with a control simulation. After 70 yr of integration, the global surface air temperature in the 1% CO2 experiment is 1.43°C warmer. In spite of this global warming, there are two distinct regions, the northern Atlantic Ocean and the southern Pacific Ocean, where the surface air temperature is up to 4°C cooler. This situation is maintained by two positive feedbacks: a local effect on convection in the South Pacific and a nonlocal impact on the meridional circulation in the North Atlantic. The poleward transport of latent energy and dry static energy by the atmosphere is greater in the 1% CO2 experiment, caused by warming and therefore increased water vapor and greater greenhouse capacity at lower latitudes. The larger atmospheric transports tend to reduce upward vertical fluxes of heat and moisture from the ocean surface at high latitudes, which has the effect of stabilizing the ocean, reducing both convection and the thermohaline circulation. With less convection, less warm water is brought up from below, and with a reduced North Atlantic thermohaline circulation (by 30% at time of CO2 doubling), the poleward energy transport by the oceans decreases. The colder water then leads to further reductions in evaporation, decreases of salinity at high latitudes, continued stabilization of the ocean, and maintenance of reduced convection and meridional overturning. Although sea ice decreases globally, it increases in the cooling regions, which reduces the overall climate sensitivity, especially in the Southern Hemisphere. Tropical warming has been observed over the past several decades; if modeling studies such as this and others that have produced similar effects are valid, these processes may already be beginning.

Full access
David H. Rind and William L. Donn

Abstract

Observations of natural infrasound produce a continual record of the sound velocity, a function of wind and temperature, at the reflection level in the upper atmosphere. Under normal conditions in winter the reflection level, for sound generated by ocean waves to the east of Palisades, N. Y., is in the lower thermosphere. During the circulation changes associated with stratospheric warmings, winds near the stratopause may become east or north, allowing infrasound to be reflected from this level. We are then provided with a continuous record of sound velocity near the stratopause. The methods which are used to distinguish between stratosphere and thermospheric sound reflection are discussed, and circulation changes for each year are cataloged.

During the warming event sound velocities in the stratosphere are shown to vary radically, with fluctuations of up to 60 m s−1 in a few hours time period. These short time period variations, observable only because of the continuous nature of infrasound recording, are greater than expected and indeed constitute a significant fraction of the total wind and temperature variation associated with the event at our latitude. As such they imply significant energy variations on shorter time scales than those usually considered important in stratospheric dynamics. Some possible explanations for these observations are given.

Full access
David Rind, William L. Donn, and W. Robinson

Abstract

Rocketsonde observations and infrasound results are used to investigate the variability of the summer stratopause region during one month in summer. It is found that fluctuations of 2–3 days and about 16-day periods are evident, which appear to be vertically propagating. In this month the 2–3 day oscillations have an amplitude envelope equal in period to the longer period oscillations, implying a connection between the two phenomena. Observations of the diurnal tide and shorter period variability during the month are also presented.

Full access
Drew T. Shindell, David Rind, and Patrick Lonergan

Abstract

Parameterized stratospheric ozone photochemistry has been included in the Goddard Institute for Space Studies (GISS) GCM to investigate the coupling between chemistry and climate change for the doubled CO2 climate. The chemical ozone response is of opposite sign to temperature changes, so that radiative cooling in the upper stratosphere results in increased ozone, while warming reduces ozone in the lower stratosphere. The increased overhead column reduces the amount of UV reaching the lower stratosphere, resulting in further ozone decreases there. Changes of up to 15% are seen, including both photochemistry and transport. Good agreement is found between the authors’ results and those in other models for tropical latitudes where the stratospheric temperature responses are similar. However, in the extratropics, there are large differences between present results and those of the other models due to differences in tropospheric warming and tropospheric forcing of the stratospheric residual circulation. A net decrease in column ozone at midlatitudes is seen in this climate model, in contrast to the other models that showed an increase in column ozone everywhere. These ozone reductions lead to an increase of 10% in UV radiation reaching the surface at northern midlatitudes. The authors find significantly less of an increase in the high-latitude ozone column than in the other models.

When parameterized heterogeneous chemistry on polar stratospheric clouds is also included, while maintaining current chlorine loading, it is found that the Antarctic ozone hole becomes significantly larger and of longer duration. In addition, an ozone hole of approximately half the depth in percent of the current Antarctic ozone hole forms in the Arctic due to both chemistry and transport changes resulting from a reduction of sudden warmings seen in the doubled CO2 atmosphere.

Full access
Drew T. Shindell, David Rind, and Nambath Balachandran

Abstract

Simulations were performed with the Goddard Institute for Space Studies GCM including a prescribed quasi-biennial oscillation (QBO), applied at a constant maximum value, and a physically realistic parameterization of the heterogeneous chemistry responsible for severe polar ozone loss. While the QBO is primarily a stratospheric phenomenon, in this model the QBO modulates the amount and propagation of planetary wave energy in the troposphere as well as in the stratosphere. Dynamical activity is greater in the easterly than in the unforced case, while westerly years are dynamically more quiescent. By altering zonal winds and potential vorticity, the QBO forcing changes the refraction of planetary waves beginning in midwinter, causing the lower-stratospheric zonal average temperatures at Southern Hemisphere high latitudes to be ∼3–5 K warmer in the easterly phase than in the westerly during the late winter and early spring. Ozone loss varies nonlinearly with temperature, due to the sharp threshold for formation of heterogeneous chemistry surfaces, so that the mean daily total mass of ozone depleted in this region during September was 8.7 × 1010 kg in the QBO easterly maximum, as compared with 12.0 × 1010 kg in the westerly maximum and 10.3 × 1010 kg in the unforced case. Through this mechanism, the midwinter divergence of the Eliassen–Palm flux is well correlated with the subsequent springtime total ozone loss (R 2 = 0.6). The chemical ozone loss differences are much larger than QBO-induced transport differences in our model.

Inclusion of the QBO forcing also increased the maximum variability in total ozone loss from the ∼20% value found in the unforced runs to ∼50%. These large variations in ozone depletion are very similar in size to the largest observed variations in the severity of the ozone hole. The results suggest that both random variability and periodic QBO forcing are important components, perhaps explaining some of the difficulties encountered in previous attempts to correlate the severity of the ozone hole with the QBO phase.

Full access
Barry H. Lynn, David Rind, and Roni Avissar

Abstract

A mesoscale atmospheric model was used to evaluate the impact of subgrid-scale landscape discontinuities on the vertical profiles of resolved temperature, moisture, and moist static energy in the planetary boundary layer (PBL) of GCMs. These profiles were produced with a 3D version of the model (using a horizontal grid resolution of 7.5 km and 13 vertical layers in the PBL) by averaging horizontally the various atmospheric variables over a 180×180 km2 domain-about the size of the horizontal domain represented by a single grid element in a GCM. They were compared to corresponding vertical profiles produced with a 1 D version of the model, which simulates the PBL, as in a GCM, over a single horizontal grid element. Differences obtained between the horizontally averaged atmospheric variables produced with the 3D situations and the 1 D simulations emphasize the impact of subgrid-scale landscape discontinuities on GCM-resolved variables. Various types of landscape discontinuities, characterized by horizontal contrasts of surface wetness and size of land patches, were simulated under various background-wind conditions. Differences of temperature, specific humidity, and moist static energy as large as 4 K, 6 g kg−1, and 10 kJ kg−1 were obtained in some cases. These differences were not affected significantly by moderate winds but were sensitive to the spatial distribution of surface wetness. Thew results emphasize the need to parameterize mesoscale processes induced by landscape discontinuities in GCMs.

Full access
Tackseung Jun, Lalith Munasinghe, and David H. Rind

Abstract

Extreme monsoon rainfall in India has disastrous consequences, including significant socioeconomic impacts. However, little is known about the overall trends and climate factors associated with extreme rainfall because rainfall greatly varies across India and because few appropriate methods are available to measure extreme rainfall in the context of such heterogeneity. To provide a comprehensive assessment of extreme monsoon rainfall, the authors developed a metric using record rainfall data to measure the changes in the likelihood of extreme high and extreme low rainfall over time; this metric is independent of the characteristics of the underlying rainfall distributions. Hence, the metric is ideally suited to aggregate extreme rainfall information across heterogeneous regions covering India. The authors found that from 1930 to 2013, the likelihood of extreme high and extreme low rainfall increases 2-fold and 4-fold, respectively. These overall trend increases are driven by anomalous increases, particularly in the early 2000s; the likelihood of extreme high and extreme low rainfall increases 5-fold and 18-fold in 2005 and 2002, respectively. These findings imply a broadening of the underlying monsoon rainfall distribution over the past century. The authors also show that the time patterns of the likelihood of extreme rainfall in recent decades are correlated with El Niño–Southern Oscillation, especially when it is in the same phase with the Pacific decadal oscillation and Indian Ocean dipole.

Full access
David Rind, William L. Donn, and Ellen Dede

Abstract

In a continuing study of the feasibility of using microbarom (natural infrasound) observations to define characteristics of upper air winds, we determined the seasonal mean trace velocity of microbaroms. We show that this is equal to the acoustic velocity at an upper reflection level. This velocity is the sum of the sound speed based on temperature alone and the wind speed. We determine the former from the vertical temperature profile and can thus calculate the wind speed at particular reflection levels in the stratosphere and ionosphere. Our results compare well with direct observations.

Full access
George Tselioudis, William B. Rossow, and David Rind

Abstract

The International Satellite Cloud Climatology Project (ISCCP) dataset is used to correlate variations of cloud optical thickness and cloud temperature in today's atmosphere. The analysis focuses on low clouds in order to limit the importance of changes in cloud vertical extent, particle size, and water phase. Coherent patterns of change are observed on several time and space scales. On the planetary scale, clouds in colder, higher latitudes are found to be optically thicker than clouds in warmer, lower latitudes. On the planetary scale, winter clouds are, for the most part, optically thicker than summer clouds. The logarithmic derivative of cloud optical thickness with temperature is used to describe the sign and magnitude of the optical thickness-temperature correlation. The seasonal, latitudinal, and day-to-day variations of this relation are examined for Northern Hemisphere clouds in 1984. The analysis is done separately for clouds over land and ocean. In cold continental clouds, optical thickness increase with temperature, consistent with the temperature variation of the adiabatic cloud water content. In warm continental and in almost all maritime clouds, however, optical thickness decreases with temperature. The behavior of the optical thickness-temperature relation is usually, though not always, the same whether the temperature variations are driven by seasonal, latitudinal, or day-to-day changes. Important exceptions are noted. Some explanations for the observed behavior are proposed.

Full access