Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: Ian A. Renfrew x
  • All content x
Clear All Modify Search
Thomas Spengler, Ian A. Renfrew, Annick Terpstra, Michael Tjernström, James Screen, Ian M. Brooks, Andrew Carleton, Dmitry Chechin, Linling Chen, James Doyle, Igor Esau, Paul J. Hezel, Thomas Jung, Tsubasa Kohyama, Christof Lüpkes, Kelly E. McCusker, Tiina Nygård, Denis Sergeev, Matthew D. Shupe, Harald Sodemann, and Timo Vihma
Full access
Mark A. Bourassa, Sarah T. Gille, Cecilia Bitz, David Carlson, Ivana Cerovecki, Carol Anne Clayson, Meghan F. Cronin, Will M. Drennan, Chris W. Fairall, Ross N. Hoffman, Gudrun Magnusdottir, Rachel T. Pinker, Ian A. Renfrew, Mark Serreze, Kevin Speer, Lynne D. Talley, and Gary A. Wick

Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitude surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air–sea surface fluxes in high latitudes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitudes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the availability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.

Full access
Thomas Jung, Neil D. Gordon, Peter Bauer, David H. Bromwich, Matthieu Chevallier, Jonathan J. Day, Jackie Dawson, Francisco Doblas-Reyes, Christopher Fairall, Helge F. Goessling, Marika Holland, Jun Inoue, Trond Iversen, Stefanie Klebe, Peter Lemke, Martin Losch, Alexander Makshtas, Brian Mills, Pertti Nurmi, Donald Perovich, Philip Reid, Ian A. Renfrew, Gregory Smith, Gunilla Svensson, Mikhail Tolstykh, and Qinghua Yang

Abstract

The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere–sea ice–ocean models, even for short-term prediction; and insight into polar–lower-latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting communites will work together with stakeholders in a period of intensive observing, modeling, prediction, verification, user engagement, and educational activities.

Full access