Search Results

You are looking at 11 - 20 of 53 items for

  • Author or Editor: James P. Kossin x
  • All content x
Clear All Modify Search
James P. Kossin and Wayne H. Schubert

Abstract

The present work considers the two-dimensional barotropic evolution of thin annular rings of enhanced vorticity embedded in nearly irrotational flow. Such initial conditions imitate the observed flows in intensifying hurricanes. Using a pseudospectral numerical model, it is found that these highly unstable annuli rapidly break down into a number of mesovortices. The mesovortices undergo merger processes with their neighbors and, depending on initial conditions, they can relax to a monopole or an asymmetric quasi-steady state. In the latter case, the mesovortices form a lattice rotating approximately as a solid body. The flows associated with such vorticity configurations consist of straight line segments that form a variety of persistent polygonal shapes.

Associated with each mesovortex is a local pressure perturbation, or mesolow. The magnitudes of the pressure perturbations can be large when the magnitude of the vorticity in the initial annulus is large. In cases where the mesovortices merge to form a monopole, dramatic central pressure falls are possible.

Full access
James P. Kossin and Daniel J. Vimont

Atlantic hurricane variability on decadal and interannual time scales is reconsidered in a framework based on a leading mode of coupled ocean-atmosphere variability known as the Atlantic meridional mode (AMM). It is shown that a large part of the variability of overall “hurricane activity,” which depends on the number of storms in a season, their duration, and their intensity, can be explained by systematic shifts in the cyclogenesis regions. These shifts are strongly correlated with the AMM on interannual as well as multidecadal time scales. It is suggested that the AMM serves to unify a number of previously documented relationships between hurricanes and Atlantic regional climate variability.

Full access
Timothy M. Hall, James P. Kossin, Terence Thompson, and James McMahon

Abstract

We use a statistical tropical cyclone (TC) model, the North Atlantic Stochastic Hurricane Model (NASHM), in combination with sea surface temperature (SST) projections from climate models, to estimate regional changes in U.S. TC activity into the 2030s. NASHM is trained on historical variations in TC characteristics with two SST indices: global–tropical mean SST and the difference between tropical North Atlantic Ocean (NA) SST and the rest of the global tropics, often referred to as “relative SST.” Testing confirms the model’s ability to reproduce historical U.S. TC activity as well as to make skillful predictions. When NASHM is driven by SST projections into the 2030s, overall NA annual TC counts increase, and the fractional increase is the greatest at the highest wind intensities. However, an eastward anomaly in mean TC tracks and an eastward shift in TC formation region result in a geographically varied signal in U.S. coastal activity. Florida’s Gulf Coast is projected to see significant increases in TC activity relative to the long-term historical mean, and these increases are fractionally greatest at the highest intensities. By contrast, the northwestern U.S. Gulf Coast and the U.S. East Coast will see little change.

Restricted access
Christopher Velden, Timothy Olander, Derrick Herndon, and James P. Kossin

Abstract

In recent years, a number of extremely powerful tropical cyclones have revived community debate on methodologies used to estimate the lifetime maximum intensity (LMI) of these events. And how do these storms rank historically? In this study, the most updated version of an objective satellite-based intensity estimation algorithm [advanced Dvorak technique (ADT)] is employed and applied to the highest-resolution (spatial and temporal) geostationary satellite data available for extreme-intensity tropical cyclones that occurred during the era of these satellites (1979–present). Cases with reconnaissance aircraft observations are examined and used to calibrate the ADT at extreme intensities. Bias corrections for observing properties such as satellite viewing angle and image spatiotemporal resolution, and storm characteristics such as small eye size are also considered.

The results of these intensity estimates (maximum sustained 1-min wind) show that eastern North Pacific Hurricane Patricia (2015) ranks as the strongest storm in any basin (182 kt), followed by western North Pacific Typhoons Haiyan (2013), Tip (1979), and Gay (1992). The following are the strongest classifications in other basins—Atlantic: Gilbert (1988), north Indian Ocean basin: Paradip (1999), south Indian Ocean: Gafilo (2004), Australian region: Monica (2006), and southeast Pacific basin: Pam (2015). In addition, ADT LMI estimates for four storms exceed the maximum allowable limit imposed by the operational Dvorak technique. This upper bound on intensity may be an unnatural constraint, especially if tropical cyclones get stronger in a warmer biosphere as some theorize. This argues for the need of an extension to the Dvorak scale to allow higher intensity estimates.

Full access
John A. Knaff, James P. Kossin, and Mark DeMaria

Abstract

This study introduces and examines a symmetric category of tropical cyclone, which the authors call annular hurricanes. The structural characteristics and formation of this type of hurricane are examined and documented using satellite and aircraft reconnaissance data. The formation is shown to be systematic, resulting from what appears to be asymmetric mixing of eye and eyewall components of the storms involving either one or two possible mesovortices. Flight-level thermodynamic data support this contention, displaying uniform values of equivalent potential temperature in the eye, while the flight-level wind observations within annular hurricanes show evidence that mixing inside the radius of maximum wind likely continues. Intensity tendencies of annular hurricanes indicate that these storms maintain their intensities longer than the average hurricane, resulting in larger-than-average intensity forecast errors and thus a significant intensity forecasting challenge. In addition, these storms are found to exist in a specific set of environmental conditions, which are only found 3% and 0.8% of the time in the east Pacific and Atlantic tropical cyclone basins during 1989–99, respectively. With forecasting issues in mind, two methods of objectively identifying these storms are also developed and discussed.

Full access
Matthew Sitkowski, James P. Kossin, and Christopher M. Rozoff

Abstract

A flight-level aircraft dataset consisting of 79 Atlantic basin hurricanes from 1977 to 2007 was used to develop an unprecedented climatology of inner-core intensity and structure changes associated with eyewall replacement cycles (ERCs). During an ERC, the inner-core structure was found to undergo dramatic changes that result in an intensity oscillation and rapid broadening of the wind field. Concentrated temporal sampling by reconnaissance aircraft in 14 of the 79 hurricanes captured virtually the entire evolution of 24 ERC events. The analysis of this large dataset extends the phenomenological paradigm of ERCs described in previous observational case studies by identifying and exploring three distinct phases of ERCs: intensification, weakening, and reintensification. In general, hurricanes intensify, sometimes rapidly, when outer wind maxima are first encountered by aircraft. The mean locations of the inner and outer wind maximum at the start of an ERC are 35 and 106 km from storm center, respectively. The intensification rate of the inner wind maximum begins to slow and the storm ultimately weakens as the inner-core structure begins to organize into concentric rings. On average, the inner wind maximum weakens 10 m s−1 before the outer wind maximum surpasses the inner wind maximum as it continues to intensify. This reintensification can be quite dramatic and often brings the storm to its maximum lifetime intensity. The entire ERC lasts 36 h on average.

Comparison of flight-level data and microwave imagery reveals that the first appearance of an outer wind maximum, often associated with a spiral rainband, typically precedes the weakening of the storm by roughly 9 h, but the weakening is already well under way by the time a secondary convective ring with a well-defined moat appears in microwave imagery. The data also show that winds beyond the outer wind maximum remain elevated even after the outer wind maximum contracts inward. Additionally, the contraction of the outer wind maximum usually ceases at a radius larger than the location of the inner wind maximum at the start of the ERC. The combination of a larger primary eyewall and expanded outer wind field increase the integrated kinetic energy by an average of 28% over the course of a complete ERC despite little change in the maximum intensity between the times of onset and completion of the event.

Full access
James P. Kossin, Timothy L. Olander, and Kenneth R. Knapp

Abstract

The historical global “best track” records of tropical cyclones extend back to the mid-nineteenth century in some regions, but formal analysis of these records is encumbered by temporal heterogeneities in the data. This is particularly problematic when attempting to detect trends in tropical cyclone metrics that may be attributable to climate change. Here the authors apply a state-of-the-art automated algorithm to a globally homogenized satellite data record to create a more temporally consistent record of tropical cyclone intensity within the period 1982–2009, and utilize this record to investigate the robustness of trends found in the best-track data. In particular, the lifetime maximum intensity (LMI) achieved by each reported storm is calculated and the frequency distribution of LMI is tested for changes over this period.

To address the unique issues in regions around the Indian Ocean, which result from a discontinuity introduced into the satellite data in 1998, a direct homogenization procedure is applied in which post-1998 data are degraded to pre-1998 standards. This additional homogenization step is found to measurably reduce LMI trends, but the global trends in the LMI of the strongest storms remain positive, with amplitudes of around +1 m s−1 decade−1 and p value = 0.1. Regional trends, in m s−1 decade−1, vary from −2 (p = 0.03) in the western North Pacific, +1.7 (p = 0.06) in the south Indian Ocean, +2.5 (p = 0.09) in the South Pacific, to +8 (p < 0.001) in the North Atlantic.

Full access
James P. Kossin, Suzana J. Camargo, and Matthew Sitkowski

Abstract

The variability of North Atlantic tropical storm and hurricane tracks, and its relationship to climate variability, is explored. Tracks from the North Atlantic hurricane database for the period 1950–2007 are objectively separated into four groups using a cluster technique that has been previously applied to tropical cyclones in other ocean basins. The four clusters form zonal and meridional separations of the tracks. The meridional separation largely captures the separation between tropical and more baroclinic systems, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. General climatologies of the seasonality, intensity, landfall probability, and historical destructiveness of each cluster are documented, and relationships between cluster membership and climate variability across a broad spectrum of time scales are identified.

Composites, with respect to cluster membership, of sea surface temperature and other environmental fields show that regional and remote modes of climate variability modulate the cluster members in substantially differing ways and further demonstrate that factors such as El Niño–Southern Oscillation (ENSO), Atlantic meridional mode (AMM), North Atlantic Oscillation (NAO), and Madden–Julian oscillation (MJO) have varying intrabasin influences on North Atlantic tropical storms and hurricanes. Relationships with African easterly waves are also considered. The AMM and ENSO are found to most strongly modulate the deep tropical systems, while the MJO most strongly modulates Gulf of Mexico storms and the NAO most strongly modulates storms that form to the north and west of their Cape Verde counterparts and closer to the NAO centers of action.

Different clusters also contribute differently to the observed trends in North Atlantic storm frequency and may be related to intrabasin differences in sea surface temperature trends. Frequency trends are dominated by the deep tropical systems, which account for most of the major hurricanes and overall power dissipation. Contrarily, there are no discernable trends in the frequency of Gulf of Mexico storms, which account for the majority of landfalling storms. When the proportion that each cluster contributes to overall frequency is considered, there are clear shifts between the deep tropical systems and the more baroclinic systems. A shift toward proportionally more deep tropical systems began in the early to mid-1980s more than 10 years before the 1995 North Atlantic hurricane season, which is generally used to mark the beginning of the present period of heightened activity.

Full access
Carl J. Schreck III, Kenneth R. Knapp, and James P. Kossin

Abstract

Using the International Best Track Archive for Climate Stewardship (IBTrACS), the climatology of tropical cyclones is compared between two global best track datasets: 1) the World Meteorological Organization (WMO) subset of IBTrACS (IBTrACS-WMO) and 2) a combination of data from the National Hurricane Center and the Joint Typhoon Warning Center (NHC+JTWC). Comparing the climatologies between IBTrACS-WMO and NHC+JTWC highlights some of the heterogeneities inherent in these datasets for the period of global satellite coverage 1981–2010. The results demonstrate the sensitivity of these climatologies to the choice of best track dataset. Previous studies have examined best track heterogeneities in individual regions, usually the North Atlantic and west Pacific. This study puts those regional issues into their global context. The differences between NHC+JTWC and IBTrACS-WMO are greatest in the west Pacific, where the strongest storms are substantially weaker in IBTrACS-WMO. These disparities strongly affect the global measures of tropical cyclone activity because 30% of the world’s tropical cyclones form in the west Pacific. Because JTWC employs similar procedures throughout most of the globe, the comparisons in this study highlight differences between WMO agencies. For example, NHC+JTWC has more 96-kt (~49 m s−1) storms than IBTrACS-WMO in the west Pacific but fewer in the Australian region. This discrepancy probably points to differing operational procedures between the WMO agencies in the two regions. Without better documentation of historical analysis procedures, the only way to remedy these heterogeneities will be through systematic reanalysis.

Full access
James P. Kossin, Kerry A. Emanuel, and Suzana J. Camargo

Abstract

The average latitude where tropical cyclones (TCs) reach their peak intensity has been observed to be shifting poleward in some regions over the past 30 years, apparently in concert with the independently observed expansion of the tropical belt. This poleward migration is particularly well observed and robust in the western North Pacific Ocean (WNP). Such a migration is expected to cause systematic changes, both increases and decreases, in regional hazard exposure and risk, particularly if it persists through the present century. Here, it is shown that the past poleward migration in the WNP has coincided with decreased TC exposure in the region of the Philippine and South China Seas, including the Marianas, the Philippines, Vietnam, and southern China, and increased exposure in the region of the East China Sea, including Japan and its Ryukyu Islands, the Korea Peninsula, and parts of eastern China. Additionally, it is shown that projections of WNP TCs simulated by, and downscaled from, an ensemble of numerical models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) demonstrate a continuing poleward migration into the present century following the emissions projections of the representative concentration pathway 8.5 (RCP8.5). The projected migration causes a shift in regional TC exposure that is very similar in pattern and relative amplitude to the past observed shift. In terms of regional differences in vulnerability and resilience based on past TC exposure, the potential ramifications of these future changes are significant. Questions of attribution for the changes are discussed in terms of tropical belt expansion and Pacific decadal sea surface temperature variability.

Full access