Search Results

You are looking at 11 - 20 of 20 items for

  • Author or Editor: Jia Yang x
  • All content x
Clear All Modify Search
Lakshmi Krishnamurthy, Gabriel A. Vecchi, Xiaosong Yang, Karin van der Wiel, V. Balaji, Sarah B. Kapnick, Liwei Jia, Fanrong Zeng, Karen Paffendorf, and Seth Underwood

Abstract

Unprecedented high-intensity flooding induced by extreme precipitation was reported over Chennai in India during November–December of 2015, which led to extensive damage to human life and property. It is of utmost importance to determine the odds of occurrence of such extreme floods in the future, and the related climate phenomena, for planning and mitigation purposes. Here, a suite of simulations from GFDL high-resolution coupled climate models are used to investigate the odds of occurrence of extreme floods induced by extreme precipitation over Chennai and the role of radiative forcing and/or large-scale SST forcing in enhancing the probability of such events in the future. The climate of twentieth-century experiments with large ensembles suggest that the radiative forcing may not enhance the probability of extreme floods over Chennai. Doubling of CO2 experiments also fails to show evidence for an increase of such events in a global warming scenario. Further, this study explores the role of SST forcing from the Indian and Pacific Oceans on the odds of occurrence of Chennai-like floods. Neither El Niño nor La Niña enhances the probability of extreme floods over Chennai. However, a warm Bay of Bengal tends to increase the odds of occurrence of extreme Chennai-like floods. In order to trigger a Chennai like-flood, a conducive weather event, such as a tropical depression over the Bay of Bengal with strong transport of moisture from a moist atmosphere over the warm Bay, is necessary for the intense precipitation.

Full access
Hiroyuki Murakami, Gabriel A. Vecchi, Thomas L. Delworth, Andrew T. Wittenberg, Seth Underwood, Richard Gudgel, Xiaosong Yang, Liwei Jia, Fanrong Zeng, Karen Paffendorf, and Wei Zhang

Abstract

The 2015 hurricane season in the eastern and central Pacific Ocean (EPO and CPO), particularly around Hawaii, was extremely active, including a record number of tropical cyclones (TCs) and the first instance of three simultaneous category-4 hurricanes in the EPO and CPO. A strong El Niño developed during the 2015 boreal summer season and was attributed by some to be the cause of the extreme number of TCs. However, according to a suite of targeted high-resolution model experiments, the extreme 2015 EPO and CPO hurricane season was not primarily induced by the 2015 El Niño tropical Pacific warming, but by warming in the subtropical Pacific Ocean. This warming is not typical of El Niño, but rather of the Pacific meridional mode (PMM) superimposed on long-term anthropogenic warming. Although the likelihood of such an extreme year depends on the phase of natural variability, the coupled GCM projects an increase in the frequency of such extremely active TC years over the next few decades for EPO, CPO, and Hawaii as a result of enhanced subtropical Pacific warming from anthropogenic greenhouse gas forcing.

Full access
Liwei Jia, Xiaosong Yang, Gabriel Vecchi, Richard Gudgel, Thomas Delworth, Stephan Fueglistaler, Pu Lin, Adam A. Scaife, Seth Underwood, and Shian-Jiann Lin

Abstract

This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over Northern Hemisphere extratropics both in the observations and climate model predictions. A suite of numerical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of the stratosphere in seasonal predictive skill of extratropical near-surface land temperature. It is shown that most of the lead-0-month spring predictive skill of land temperature over extratropics, particularly over northern Eurasia, stems from stratospheric initialization. It is further revealed that this predictive skill of extratropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical connection between the stratosphere and troposphere is also demonstrated by the significant correlation between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the stratospheric zonal wind anomalies to the lower troposphere.

Full access
Wei Zhang, Gabriel A. Vecchi, Hiroyuki Murakami, Thomas L. Delworth, Karen Paffendorf, Liwei Jia, Gabriele Villarini, Rich Gudgel, Fanrong Zeng, and Xiaosong Yang
Full access
Liwei Jia, Gabriel A. Vecchi, Xiaosong Yang, Richard G. Gudgel, Thomas L. Delworth, William F. Stern, Karen Paffendorf, Seth D. Underwood, and Fanrong Zeng

Abstract

This study investigates the roles of radiative forcing, sea surface temperatures (SSTs), and atmospheric and land initial conditions in the summer warming episodes of the United States. The summer warming episodes are defined as the significantly above-normal (1983–2012) June–August 2-m temperature anomalies and are referred to as heat waves in this study. Two contrasting cases, the summers of 2006 and 2012, are explored in detail to illustrate the distinct roles of SSTs, direct radiative forcing, and atmospheric and land initial conditions in driving U.S. summer heat waves. For 2012, simulations with the GFDL atmospheric general circulation model reveal that SSTs play a critical role. Further sensitivity experiments reveal the contributions of uniform global SST warming, SSTs in individual ocean basins, and direct radiative forcing to the geographic distribution and magnitudes of warm temperature anomalies. In contrast, for 2006, the atmospheric and land initial conditions are the key drivers. The atmospheric (land) initial conditions play a major (minor) role in the central and northwestern (eastern) United States. Because of changes in radiative forcing, the probability of areal-averaged summer temperature anomalies over the United States exceeding the observed 2012 anomaly increases with time over the early twenty-first century. La Niña (El Niño) events tend to increase (reduce) the occurrence rate of heat waves. The temperatures over the central United States are mostly influenced by El Niño/La Niña, with the central tropical Pacific playing a more important role than the eastern tropical Pacific. Thus, atmospheric and land initial conditions, SSTs, and radiative forcing are all important drivers of and sources of predictability for U.S. summer heat waves.

Full access
Liwei Jia, Xiaosong Yang, Gabriel A. Vecchi, Richard G. Gudgel, Thomas L. Delworth, Anthony Rosati, William F. Stern, Andrew T. Wittenberg, Lakshmi Krishnamurthy, Shaoqing Zhang, Rym Msadek, Sarah Kapnick, Seth Underwood, Fanrong Zeng, Whit G. Anderson, Venkatramani Balaji, and Keith Dixon

Abstract

This study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a new high-resolution climate model developed by the Geophysical Fluid Dynamics Laboratory and explores the possible sources of the skill. The authors employ a statistical optimization approach to identify the most predictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive skill of these components. First, the improved skill of the high-resolution model over the previous lower-resolution model in seasonal prediction of the Niño-3.4 index and other aspects of interest is shown. Then, the skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured, and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of the most predictable components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts, the two most predictable components of temperature are characterized by a component that is likely due to changes in external radiative forcing in boreal winter and summer and an ENSO-related pattern in boreal winter. The most predictable components of precipitation in both seasons are very likely ENSO-related. These components of temperature and precipitation can be predicted with significant correlation skill at least 9 months in advance. The reconstructed predictions using only the first few predictable components from the model show considerably better skill relative to observations than raw model predictions. This study shows that the use of refined statistical analysis and a high-resolution dynamical model leads to significant skill in seasonal predictions of 2-m air temperature and precipitation over land.

Full access
Xiaosong Yang, Gabriel A. Vecchi, Rich G. Gudgel, Thomas L. Delworth, Shaoqing Zhang, Anthony Rosati, Liwei Jia, William F. Stern, Andrew T. Wittenberg, Sarah Kapnick, Rym Msadek, Seth D. Underwood, Fanrong Zeng, Whit Anderson, and Venkatramani Balaji

Abstract

The seasonal predictability of extratropical storm tracks in the Geophysical Fluid Dynamics Laboratory’s (GFDL)’s high-resolution climate model has been investigated using an average predictability time analysis. The leading predictable components of extratropical storm tracks are the ENSO-related spatial patterns for both boreal winter and summer, and the second predictable components are mostly due to changes in external radiative forcing and multidecadal oceanic variability. These two predictable components for both seasons show significant correlation skill for all leads from 0 to 9 months, while the skill of predicting the boreal winter storm track is consistently higher than that of the austral winter. The predictable components of extratropical storm tracks are dynamically consistent with the predictable components of the upper troposphere jet flow for both seasons. Over the region with strong storm-track signals in North America, the model is able to predict the changes in statistics of extremes connected to storm-track changes (e.g., extreme low and high sea level pressure and extreme 2-m air temperature) in response to different ENSO phases. These results point toward the possibility of providing skillful seasonal predictions of the statistics of extratropical extremes over land using high-resolution coupled models.

Full access
Hanqin Tian, Jia Yang, Chaoqun Lu, Rongting Xu, Josep G. Canadell, Robert B. Jackson, Almut Arneth, Jinfeng Chang, Guangsheng Chen, Philippe Ciais, Stefan Gerber, Akihiko Ito, Yuanyuan Huang, Fortunat Joos, Sebastian Lienert, Palmira Messina, Stefan Olin, Shufen Pan, Changhui Peng, Eri Saikawa, Rona L. Thompson, Nicolas Vuichard, Wilfried Winiwarter, Sönke Zaehle, Bowen Zhang, Kerou Zhang, and Qiuan Zhu

Abstract

Nitrous oxide (N2O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N2O fluxes and the key drivers of N2O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N2O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N2O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N2O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N2O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N2O dynamics; and 3) provide a benchmarking estimate of N2O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N2O estimation derived from the NMIP is a key component of the global N2O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative.

Open access
G. A. Vecchi, T. Delworth, R. Gudgel, S. Kapnick, A. Rosati, A. T. Wittenberg, F. Zeng, W. Anderson, V. Balaji, K. Dixon, L. Jia, H.-S. Kim, L. Krishnamurthy, R. Msadek, W. F. Stern, S. D. Underwood, G. Villarini, X. Yang, and S. Zhang

Abstract

Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic ocean biases through “flux adjustment.” A suite of 12-month duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model to observationally constrained conditions at the start of each forecast period, using both the standard and flux-adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional TC activity months in advance are feasible.

Full access
Mitchell Bushuk, Michael Winton, F. Alexander Haumann, Thomas Delworth, Feiyu Lu, Yongfei Zhang, Liwei Jia, Liping Zhang, William Cooke, Matthew Harrison, Bill Hurlin, Nathaniel C. Johnson, Sarah Kapnick, Colleen McHugh, Hiroyuki Murakami, Anthony Rosati, Kai-Chih Tseng, Andrew T. Wittenberg, Xiaosong Yang, and Fanrong Zeng

Abstract

Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales.

Restricted access