Search Results

You are looking at 11 - 20 of 25 items for

  • Author or Editor: Judah Cohen x
  • All content x
Clear All Modify Search
Gavin Gong, Dara Entekhabi, and Judah Cohen

Abstract

Previous modeling studies have identified a teleconnection pathway linking observation-based early season Siberian snow perturbations to a modulation of the winter Arctic Oscillation (AO) mode. In this study, the key role of orography in producing this modeled teleconnection is explicitly investigated using numerical experiments analogous to the previous studies. The climatic response to the same snow perturbation is investigated under modified orographic barriers in southern and eastern Siberia. Reducing these barriers results in a weakening of the prevailing orographically forced region of stationary wave activity centered over Siberia, as well as the snow-forced upward wave flux anomaly that initiates the teleconnection. This diminished anomaly propagates upward, but does not extend into the stratosphere to weaken the polar vortex. Consequently, poleward refraction of upper-tropospheric waves and downward propagation of coupled wave–mean flow anomalies, which ultimately produce the negative winter AO response, fail to develop. Thus, the mountains represent an orographic constraint on the snow–AO teleconnection pathway. By reducing the orographic barrier, the snow-forced influx of wave energy remains in the troposphere and, instead, produces a hemispheric-scale equatorward wave refraction.

Full access
Gavin Gong, Dara Entekhabi, and Judah Cohen

Abstract

Numerous studies have hypothesized that surface boundary conditions or other external mechanisms drive the hemispheric mode of atmospheric variability known as the Arctic Oscillation (AO), or its regional counterpart, the North Atlantic Oscillation (NAO). However, no single external factor has emerged as the dominant forcing mechanism, which has led, in part, to the characterization of the AO–NAO as a fundamental internal mode of the atmospheric system. Nevertheless, surface forcings may play a considerable role in modulating, if not driving, the AO–NAO mode. In this study, a pair of large-ensemble atmospheric GCM experiments (with SST climatology), one with prescribed climatological snow mass and another with freely varying snow mass, is conducted to investigate the degree to which the AO–NAO is modulated by interannual variability of surface snow conditions. Statistical analysis of the results indicates that snow anomalies are not required to produce the AO–NAO mode of variability. Nevertheless, interannual variations in snow mass are found to exert a modulating influence on the AO–NAO mode. Snow variations excite the AO pattern over the North Atlantic sector, produce correlated hemispheric AO features throughout the troposphere and stratosphere, and generate autumn sea level pressure anomalies over Siberia that evolve into the winter AO–NAO. These numerical modeling results are consistent with previous observational analyses that statistically link the AO–NAO mode with the Siberian high and associated snow cover variations.

Full access
Kazuyuki Saito, Judah Cohen, and Dara Entekhabi

Abstract

Recently it has been shown that the area extent of Eurasian snow cover during September–October–November (SON) and the principal component of the leading mode of extratropical Northern Hemisphere (NH) climate variability in the following winter are statistically correlated. In this paper, physical linkages between SON Eurasian snow cover and the wintertime climate variability in the NH atmosphere are postulated. And in order to test the proposed hypotheses, comprehensive analyses of satellite-based observations for snow cover and reanalysis data for geopotential heights and sea level pressure are used.

The magnitude of the correlation between snow cover and climate variability is found to be inversely proportional to the height suggesting that snow cover may act as a lower boundary forcing to the tropospheric circulation. Conversely, however, an index constructed to capture the downward propagating circulation anomaly from the lower stratosphere to the middle troposphere is shown to be as highly correlated with snow cover variability as the Arctic oscillation derived from sea level pressure.

A mechanism involving the vertical propagation of Rossby waves is proposed to explain this apparent contradiction. Anomalous fall snow cover variability not only alters near-surface temperatures but also impacts upward propagating Rossby waves. Changes forced in the stratosphere by anomalous snow cover are not realized until later in the winter season when the troposphere and stratosphere are actively coupled.

Full access
Gavin Gong, Dara Entekhabi, and Judah Cohen

Abstract

Wintertime Northern Hemisphere climate variability is investigated using large-ensemble (20) numerical GCM simulations. Control simulations with climatological surface (land and ocean) conditions indicate that the Arctic Oscillation (AO) is an internal mode of the Northern Hemisphere atmosphere, and that it can be triggered through a myriad of perturbations. In this study the role of autumn land surface snow conditions is investigated. Satellite observations of historical autumn–winter snow cover are applied over Siberia as model boundary conditions for two snow-forced experiments, one using the highest observed autumn snow cover extent over Siberia (1976) and another using the lowest extent (1988). The ensemble-mean difference between the two snow-forced experiments is computed to evaluate the climatic response to Siberian snow conditions. Experiment results suggest that Siberian snow conditions exert a modulating influence on the predominant wintertime Northern Hemisphere (AO) mode. Furthermore, an atmospheric teleconnection pathway is identified, involving well-known wave–mean flow interaction processes throughout the troposphere and stratosphere. Anomalously high Siberian snow increases local upward stationary wave flux activity, weakens the stratospheric polar vortex, and causes upper-troposphere stationary waves to refract poleward. These related stationary wave and mean flow anomalies propagate down through the troposphere via a positive feedback, which results in a downward-propagating negative AO anomaly during the winter season from the stratosphere to the surface. This pathway provides a physical explanation for how regional land surface snow anomalies can influence winter climate on a hemispheric scale. The results of this study may potentially lead to improved predictions of the winter AO mode, based on Siberian snow conditions during the preceding autumn.

Full access
Judah Cohen, Mathew Barlow, and Kazuyuki Saito

Abstract

The warming trend in global surface temperatures over the last 40 yr is clear and consistent with anthropogenic increases in greenhouse gases. Over the last 2 decades, this trend appears to have accelerated. In contrast to this general behavior, however, here it is shown that trends during the boreal cold months in the recent period have developed a marked asymmetry between early winter and late winter for the Northern Hemisphere, with vigorous warming in October–December followed by a reversal to a neutral/cold trend in January–March. This observed asymmetry in the cold half of the boreal year is linked to a two-way stratosphere–troposphere interaction, which is strongest in the Northern Hemisphere during late winter and is related to variability in Eurasian land surface conditions during autumn. This link has been demonstrated for year-to-year variability and used to improve seasonal time-scale winter forecasts; here, this coupling is shown to strongly modulate the warming trend, with implications for decadal-scale temperature projections.

Full access
Judah Cohen, Dara Entekhabi, Kazuyuki Saito, Gavin Gong, and David Salstein
Full access
Judah Cohen, Mathew Barlow, Paul J. Kushner, and Kazuyuki Saito

Abstract

A diagnostic of Northern Hemisphere winter extratropical stratosphere–troposphere interactions is presented to facilitate the study of stratosphere–troposphere coupling and to examine what might influence these interactions. The diagnostic is a multivariate EOF combining lower-stratospheric planetary wave activity flux in December with sea level pressure in January. This EOF analysis captures a strong linkage between the vertical component of lower-stratospheric wave activity over Eurasia and the subsequent development of hemisphere-wide surface circulation anomalies, which are strongly related to the Arctic Oscillation. Wintertime stratosphere–troposphere events picked out by this diagnostic often have a precursor in autumn: years with large October snow extent over Eurasia feature strong wintertime upward-propagating planetary wave pulses, a weaker wintertime polar vortex, and high geopotential heights in the wintertime polar troposphere. This provides further evidence for predictability of wintertime circulation based on autumnal snow extent over Eurasia. These results also raise the question of how the atmosphere will respond to a modified snow cover in a changing climate.

Full access
Judah L. Cohen, David A. Salstein, and Richard D. Rosen

Abstract

The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis for 1948–97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP–NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

Full access
Karen L. Smith, Paul J. Kushner, and Judah Cohen

Abstract

One of the outstanding questions regarding the observed relationship between October Eurasian snow cover anomalies and the boreal winter northern annular mode (NAM) is what causes the multiple-week lag between positive Eurasian snow cover anomalies in October and the associated peak in Rossby wave activity flux from the troposphere to the stratosphere in December. This study explores the following hypothesis about this lag: in order to achieve amplification of the wave activity, the vertically propagating Rossby wave train associated with the snow cover anomaly must reinforce the climatological stationary wave, which corresponds to constructive linear interference between the anomalous wave and the climatological wave. It is shown that the lag in peak wave activity flux arises because the Rossby wave train associated with the snow cover is in quadrature or out of phase with the climatological stationary wave from October to mid-November. Beginning in mid-November the associated wave anomaly migrates into a position that is in phase with the climatological wave, leading to constructive interference and anomalously positive upward wave activity fluxes until mid-January. Climate models from the Coupled Model Intercomparison Project 3 (CMIP3) do not capture this behavior. This linear interference effect is not only associated with stratospheric variability related to Eurasian snow cover anomalies but is a general feature of Northern Hemisphere troposphere–stratosphere interactions and, in particular, dominated the negative NAM events of the fall–winter of 2009/10.

Full access
Marlene Kretschmer, Dim Coumou, Laurie Agel, Mathew Barlow, Eli Tziperman, and Judah Cohen

Abstract

The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Niño–Southern Oscillation (ENSO) variability is included as well.

Open access